
Lu F, Cui H, Wang L et al. Dynamic I/O-Aware Scheduling for Batch-Mode Applications on Chip Multiprocessor

Systems of Cluster Platforms. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY Vol.(No.):1-end Mon.

Year

Dynamic I/O-Aware Scheduling for Batch-Mode Applications on Chip

Multiprocessor Systems of Cluster Platforms

Fang Lu1, 2 (吕 方), Hui-Min Cui1 (崔慧敏), Member, CCF, Lei Wang1 (王 蕾), Lei Liu1, 2 (刘 磊),

Cheng-Gang Wu1 (武成岗), Member, CCF/ACM/IEEE, Xiao-Bing Feng1 (冯晓兵), Member,

CCF/ACM/IEEE, and Pen-Chung Yew3, 4 (游本中), Fellow, IEEE

1State Key Laboratory of Computer Architecture, ICT, CAS, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China

3Department of Computer Science and Engineering, University of Minnesota at Twin-Cities,

Minnesota, USA

4Institute of Information Science, Academia Sinica, Taiwan, China

E-mail: {flv, cuihm, wlei, liulei2010, wucg, fxb}@ict.ac.cn; yew@cs.umn.edu

Abstract Efficiency of batch processing is becoming increasingly important for many modern

commercial service centers, e.g. clusters and cloud computing datacenters. However, periodical

resource contentions have become the major performance obstacles for concurrently running

applications on mainstream CMP servers. I/O contention is such a kind of obstacle, which could

impede both the co-running performance of batch jobs and the system throughput seriously. In this

 PAPER CLASSIFICATION

Supported by National Basic Research Development Program of China (973 program) under grant 2011CB302504,

National High Technology Research and Development Program of China (863 program) under grant 2012AA010902,

and National Natural Science Foundation of China under the grant 61202055, 60925009, 60921002, 61100011

contemporarily.

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 2

paper, a dynamic I/O-aware scheduling algorithm is proposed to lower the impacts of I/O

contention and to enhance the co-running performance in batch processing. We setup our

environment on an 8-socket, 64-core server in Dawning Linux Cluster. 15 workloads ranging from

8 jobs to 256 jobs are evaluated. Our experimental results showed significant improvements on the

throughputs of the workloads, which range from 7% to 431%. Meanwhile, noticeable improvements

on the slowdown of workloads and the average runtime for each job could be achieved. These

results show that a well-tuned dynamic I/O-aware scheduler is beneficial for batch-mode services. It

can also enhance the resource utilization via throughput improvement on modern service platforms.

Keywords chip multiprocessor, batch processing, co-running, I/O contention, scheduling (key

words)

3 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

1. Introduction

Cluster, datacenter and cloud computing have

emerged as major computing platforms for the

ever expanding applications today[1]. On such

platforms, batch-mode processing (or batch

processing, for short) is still one of the major

service patterns1,2. It is non-interactive and has

very different demands on both performance and

QoS[1]. For example, some inquiry services may

have higher demands on the responding time

(performance), while services such as offline

backup have higher demands on correctness.

Harvard-MIT Data Center (HMDC) 3 , some

commercial service providers such as Amazon

Elastic Compute Cloud (Amazon EC2) and

Google Cloud Platform all offer such services.

There are three main requirements in batch

processing:

 Scalability in Pipelining. batched jobs are

dynamically and continuously pumped

1 Migration scenario: Migrating batch processes to the aws cloud.
http://d36cz9buwru1tt.cloudfront.net/CloudMigration-scenario-
batch-apps.pdf, August 2013.
2Microsoft. Batch Applications—the hidden asset, August 2013.
3 Getting started with batch processing.
http://support.hmdc.harvard.edu/book/export/html/402, August
2013.

into the computing platforms, some with

300 jobs per night.

 Multi-Dimension Resource

Requirements . the resource requirements

for each job include not only computing

cores, but also memory, bandwidth and

I/O related resources [3].

 Scalability in Data Sets. due to the

development of web applications, big

input data sets have become one of the

most remarkable characters.

These requirements have created higher

demands on the server system capacity, and thus

stimulated the development of parallel server

systems. Servers have evolved from the former

SMP architectures to the current CMP

architectures, which house multiple sockets and

more computing units. On such multi-socket

CMP systems, shared resource contentions

become major concerns because, if left

unattended, the potential contentions on shared

resources among competing jobs running on

different cores could seriously impede the co-

lenovo
高亮
全称是chip multiprocessor?

lenovo
高亮
symmetric multiprocessing?全称是？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 4

running performance and the overall system

throughput. Hence, resolving such contentions

have become one of the most important issues

for such systems [2-13].

For many applications, shared I/O-related

resource is a significant contention point[14]. In

fact, I/O bottleneck has been known on parallel

computing systems for some time[14-18,19]. With

decades of technological innovations,

improvement on I/O latency still lags

significantly behind that of CPU and memory.

There have been many techniques proposed to

improve I/O performance by rescheduling I/O

requests[15-18], or using shared memory as disk

cache [20]. However, no matter for I/O intensive

applications, or other types of applications which

rely on some data input files, I/O contention is

still one of the most harassing problems in batch

services. Their co-running performances are

much more prone to I/O conflicts because of the

concurrent file operations. Therefore, more work

still needs to be done to mitigate I/O contention

on large-scale multi-socket CMP systems.

In this paper, a new approach using a

dynamic timeslice-based (quantum-based) I/O-

aware scheduling policy is proposed to enhance

the I/O performance on multi-socket CMP

systems. It is done through regulating I/O

contention dynamically. We evaluate the

effectiveness of the scheduler from three aspects:

the throughput, the workload slowdown, and the

average runtime for each job. The evaluations

are setup on an 8-socket, 64-core CMP server

node. 15 workloads, which range from 8 jobs to

256 jobs dynamically, are experimented on this

platform. Experimental results show that the

proposed scheduler could achieve 7% to 431%

improvements on the throughput of all

workloads. Meanwhile, noticeable

improvements on the slowdown of workloads

and the average runtime for each job could be

obtained.

Improving the co-running performance of

CMP systems has many practical implications

for large web applications with expanding data

5 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

sets. From this perspective, we made the

following contributions in this paper:

 A methodology has been proposed that

could isolate the impacts of inter-socket

I/O contention from intra-socket

resources contentions, such as CPU and

memories, and give a more precise

qualification of the impacts from global

I/O contention on large-scale multi-socket

CMP systems.

 An effective dynamic scheduling policy

for batch processing is proposed to

mitigate global I/O contention. The policy

is adaptive to the scalability of batch

applications and the dynamic variation of

periodical I/O contentions.

 Through evaluations on the throughput,

the slowdown of the workloads and the

average runtime for each user job, the

proposed dynamic policy is shown to be

effective and beneficial for batch services

which are sensitive to I/O contentions.

The rest of the paper is organized as follows.

The impacts of global I/O contention on co-

located batch-processing jobs are examined in

Section 2. Section 3 presents our proposed

dynamic I/O-aware scheduling policy.

Experiments and evaluations are detailed in

Section 4. Related work is covered in Section 5.

Section 6 summarizes our work and presents

some possible future work.

2. Conflicts in Co-Location

Shared resource contentions among co-

running applications are the major reasons for

the performance degradation on CMP systems.

However, the effects of contention from various

shared resources such as CPU, last-level shared

cache (LLC), memories and I/O systems are all

juxtaposed in a very complex way. It's difficult

to distinguish one kind of contention from

another on such systems. In this section, we use

a methodology of CMP stacking to distinguish

the impacts of global I/O contention from other

shared resources contained within a socket. The

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 6

following two constraints are useful to isolate

such I/O contentions.

 Confinement. The overall resource

requirements of a batch job, including

computing cores, private and shared

cache memories, as well as memory

bandwidth, are satisfied within each CMP

(i.e. confined within each socket).

Although there could be multiple

concurrent batch jobs sharing the

resources of the same CMP (in a socket),

the inter-socket I/O contention becomes

the most outstanding feature for batch

jobs running on different CMPs

considering the much higher costs of I/O

operations versus lower costs of other

resource contentions.

 Sustainability. The overall resource

requirements of a job would abide by the

confinement rule during the execution. It

will not ask for other inter-socket

resources except I/O demands during its

entire execution.

The constrains of "confinement" and

"sustainability " can be guaranteed in existing

systems with NUMA. In particular, for Linux,

the default resource allocation strategy (node-

local) would keep a job's resource consumption

as "local", i.e., its memory would be allocated to

the local memory of its core(s) on NUMA

architecture[21]. Furthermore, the allocation

strategy also keeps the resource consumption as

"local" throughout the job execution. Therefore,

the premises of CMP stacking could be satisfied,

and consequently, inter-socket I/O contention

turns into the critical issue for co-running

performance degradation. We would give a

further discussion for the leading role of the

inter-socket I/O contention in Section 2.3.

CMP stacking is setup to illuminate the

negative impacts of I/O contentions on batch

processing. However, our solution would target

to all concurrent jobs, which includes not only

inter-socket I/O contentions, but also that inside

sockets.

lenovo
高亮
指谁？

lenovo
高亮
指谁？

7 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

2.1 CMP Stacking

In our methodology, we gradually increase

the intensity of I/O contention by adding CMPs

one by one (i.e. stacking up CMPs). Each CMP

is fully loaded with concurrent batch jobs on

each core. By the two constraints of

“confinement” and “sustainability”, although

jobs on the same CMP still suffer from resource

contentions within the CMP, the global I/O

contention becomes the major inter-socket

interferences during the process of stacking up

CMPs. For the easiness of our presentation, we

use the following definitions.

For a job, jJob , on CMP p,

j
aloneT : It is the execution time of jJob when it

runs alone, i.e. without any resource contention.

1
j
cT : It is the execution time of jJob when it

co-runs with other concurrent batch jobs on the

same CMP (denoted as 1-c in the subscript of T),

while no other jobs are co-running on other

CMPs concurrently. It is different from

j
aloneT because of possible contentions within the

CMP.

j
k cT : It is the execution time of jJob when

there are k CMPs running concurrent batch jobs

(denoted as k-c in the subscript of T). It will

change when the number of concurrent jobs on

other CMPs changes.

Table 1. Description for appLications

 Application Type Description

Real user
application

Paper Similar
(abbr. PS)

2-threaded A program which compares a paper with the other K papers
concurrently, while K is 2 in our work.

Kmeans
clustering

(abbr. KM)

8-threaded A key algorithm from data mining which partitions n
observations into k clusters.

Graph500 graph
1-thread BFS algorithm from Graph500. The graph for searching is

generated with two parameters, s and e, which stand for a
graph’s scale and edge factor, respectively.

PARSEC
benchmarks

x264 1-thread encoding video
vips 1-thread image processing library

freqmine 1-thread data mining problem
bodytrack 1-thread tracker of the 3D pose of a human body
raytrace 1-thread Tracing the path of light and generating images

lenovo
高亮
这些后面不用加ed？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 8

The performance degradation due to other

concurrent jobs running on other k-1 CMPs

could be measured by the difference between

1
j
cT and j

k cT . It could be clearly ascribed to the

inter-socket I/O contentions. We use normalized

run time for the comparison as in (1).

1

_
j

k c
j
c

T
normalized runtime

T

 (1)

2.2 Benchmarks and Platforms

Before presenting experiments with our

methodology, we introduce the benchmarks and

the platform as follows.

2.2.1 Benchmarks

More and more applications today become

increasingly sensitive to I/O contentions due to

their fast expanding input data sets. In this

section, we use duplicated copies of a

benchmark with the same input sets to

demonstrate I/O contentions. This could

facilitate our analyses because they have the

same demands on all resources. More

complicated and randomly generated workload

types are covered and examined in Section 4.

Different I/O APIs can lead to different forms

of I/O contentions. We have observed two types

of I/O contentions from our experiments:

 Explicit I/O. It is caused by the usage of

API such as fread and fwrite, which

contends for I/O related resources directly

and as a result, suffers from I/O conflicts

directly.

 Implicit I/O. It is incurred by the memory

associated file operations (e.g. mmap),

which impose a high pressure on the main

memory. Thus, swapping is usually

involved in these operations, leading to

I/O contentions.

Considering the above differences, we use

three kinds of applications to demonstrate the

side-effects of I/O contentions in Table 1:

 Real User Application. Two real

applications from regular users in

Dawning Cluster are adopted in our work,

which are paper similarity examination,

and Kmeans cluster algorithm. These two

9 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

applications employ explicit I/O APIs in

their file operations.

 Benchmarks from Graph500 4 . Graph

traversal algorithms with sequential

compressed-sparse-row implementation

are used. The amount of I/O requests in

the benchmark is proportionate to the

graph size it traverses. The graph for

searching is generated with two

parameters, s and e. They correspond to a

graph’s scale and edge factor,

respectively. For example, the graph

created with ”-s 22 -e 18” is much larger

than that with ”-s 22 -e 16”, so does the

number of I/O requests. The usage of

mmap in the application would lead to

continuous implicit I/O behaviors.

 Benchmarks from the Princeton

Application Repository for Shared-

Memory Computers (PARSEC 3.1)5. This

package is made up of more than ten

4 http://www.graph500.org/, August 2013.
5 http://parsec.cs.princeton.edu/, August 2013.

applications, which have diverse

sensitivities to I/O contentions due to

their different sizes of data input files and

different periodic I/O characteristics.

Contentions from explicit I/O APIs could

be demonstrated with this package.

Among all data sets, the medium data set

of simlarge and the largest data set of

native are used in our work. We only

introduce five benchmarks which are

relatively more sensitive to I/O

contentions as shown in Table 1. We

would include some benchmarks such as

swaptions which are less sensitive to I/O

contention in Section 4 for more thorough

evaluations.

A workload is composed of one or more

batch jobs. For a clearer analysis, in this section,

we use single-threaded jobs as our examples to

demonstrate the I/O contentions, and the number

of concurrently running jobs in the workload

ranges from 8 to 64 jobs on a server node. Note

that our CMP stacking method and our

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 10

scheduling solution themselves do not have

these limitations. We would cover both single-

threaded job and multi-threaded jobs in later

sections. Dynamically increasing the number of

batch jobs for the workload is also permitted. All

these issues would be discussed and evaluated in

Section 3 and Section 4.

2.2.2 Platform

The server node used in our work is a CMP

system integrated with Intel® Xeon® X7550

processors in Dawning Linux Cluster. It is based

on Nehalem architecture. Most of the state-of-art

high-performance CMP systems from Intel® are

evolved from this type of architecture. The CMP

server is an 8-socket CMP server node with

NUMA support. Each of the CMP (socket) has 8

cores and 32GB local memory. It uses Linux OS

2.6.32 for X86-64.

2.3 Performance Degradation from I/O

Contention

2.3.1 Influences from Inter-Socket I/O

Contentions

In this section, we use CMP stacking to

illustrate the performance degradation from I/O

contention. For a clearer description, CMP

stacking is experimented with four workloads,

which are composed with either duplicated

explicit I/O jobs (x264) or duplicated implicit

I/O jobs (graph) in this section. CMP stacking

for each workload includes four steps: one-CMP

running, two-CMP running, four-CMP running

and eight-CMP running. Each step runs 8, 16, 32,

and 64 jobs, respectively. During each step, we

full-load all cores with 8 jobs on each co-

running CMP. Through this process, we could

observe the severe performance impacts from

inter-socket I/O contentions.

Table 2. Workloads and Input Set

Benchmark Input set

#1 x264 simlarge

#2 x264 native

#3 graph -s 22 -e 16

#4 graph -s 22 -e 18

11 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

Table 2 lists the detailed information for each

workload that is generated from two benchmarks,

x264 and graph.

There are four curves in Figure 1. Each curve

stands for the normalized runtime of each job in

the four steps (denoted as k-c in Figure 1, or k-

CMP in later figures). Take workload #1 in

Table 2 as an example, the average runtime for a

x264 job is 7 seconds (denoted as 7s) on 1 CMP,

while it degrades to 122s when co-running with

other 56 jobs on seven other CMPs. It is about

16x degradation due to the increased I/O

contention.

Data in these figures display similar trend in

performance degradation for all four workloads.

That is, each job’s performance will degrade

with CMP stacking. The more co-runners are,

the more they would suffer from I/O contentions.

2.3.2 Discussion for Other Influences

It is worth noticing that inter-socket I/O

contention is not the only type among different

sockets. Cache coherency （CC） still plays a

role among CMPs for some cache-miss intensive

tasks. However, CC cost is much lower than that

from I/O contentions. Therefore, we ignore CC

interferences in our work according to the

following experiments.

Figure 2 displays experiments for the inter-

socket CC costs on our Intel Nehalem server

system, which uses MESIF6 as its cache protocol.

The maximum CC costs is about 33.7%, which

are generated from the most serious LLC misses

（6.90/Cycle per CMP） during 8-C co-running.

This is much more trivial than 2x ~ 16x

degradations from I/O contentions in Figure 1.

6 http://en.wikipedia.org/wiki/MESIF_protocol, August 2013.

Fig.1. Inter-socket performance impacts from I/O
contentions while increasing the number of CMPs.

Fig.2. Performance degradation from inter-socket CC
costs in k-CMP configuration, k =1, 2, 4, 6, 8.

lenovo
附注
上面的是k-C，但标题是number of concurrent CMPs，不一致

lenovo
高亮
指一个？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 12

The experiments in Figure 2 are performed

with CMP stacking, while each CMP runs LLC-

miss intensive kernels as in Figure 3. All

experiments comply with the two constrains of

“confinement” and “sustainability”. Each data

copy in the kernel can produce a read miss and a

write miss. Through varying the number of nops,

we could get different LLC miss rate inside a

CMP. CMP LLC miss rate at 6.90/cycle is the

maximum number which can be generated on

the server. During the process of CMP stacking

up, intensive LLC misses in a CMP would bring

forth cache coherency information globally,

which result in inter-socket performance

influences. In such circumstance, CC cost is the

most outstanding inter-socket performance

influences. Each curve in the figure stands for

the runtime degradation of the kernel during the

CMP stacking process. Data in the figure

displays that the more the LLC miss rate is , the

more CC cost is. However, the maximum

performance influences from CC (by LLC miss

rate 6.90/Cycle) is only about 33.7% during 8-C

running.

Above all, we ignore CC costs and only focus

on costs from I/O contentions in our paper .

2.4 Analysis for I/O Contention

2.4.1 Analysis Methodology

The analyses of global I/O contention are

made with the support of Linux OS. For each

I/O request serviced by the local storage disk,

the latency can be divided into two parts: the I/O

waiting time and the hard disk serving time by

the I/O devices, as show in Figure 4.

Fig.4. Two parts for the latency of I/O requests.

#define ITERATION 1000 //repeat the experiments
#define CACHELINE 64 // the cache line size
#define COL CACHELINE/sizeof(int)
#define ROW (MEM_SIZE/COL*sizeof(int))
int a[ROW][COL].b[ROW][COL];
#define nops 5000 //intervals between two successive
reads

//memory allocation
 Initialization(a, b);
for (iter=0; iter<ITERATION; Iter++){
//LLC cache miss kernel
 for (i=0; i<ROW; i++) {
 b[i][0] = a[I][0];
 //use nops to adjust the density of LLC misses
 for (k=0; k<nops;k++) {
 asm(“nops”);
 }
 }
}

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

Procedure LLCMISS_Pressure

Fig.3. LLC-miss kernel.

lenovo
高亮
其它各处没有up

13 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

 _ Serving WaitingIO Latency Latency Latency (2)

ServingLatency is the actual service time of a I/O

request by the I/O device. This latency is

decided by both the decision making of disk

controller and the specific I/O devices.

WaitingLatency is the handling time of the software

scheduler for a I/O request, and the time costs in

I/O queues. The default task and I/O scheduler

are completely fair schedule(CFS) policies on

our Linux OS[22]. It also includes the extra

overhead resulted from bursts of I/O requests.

I/O latency is calculated with these two parts

as in (2).

The analysis is made with a Linux user utility,

iostat, a statistical tool for I/O devices in Linux.

This tool samples the status of I/O devices at a

fixed time interval specified by the user. In our

experiments, we set the sampling interval to be 1

second.

For each I/O request, _IO Latency can be

calculated from the entry await in the report

generated by iostat. It includes both waiting time

and hard disk serving time for each I/O device

operation. The entry svctm in the report stands

for the service time and the software waiting

time can be calculated accordingly. By studying

changes in these two parts in the process of CMP

stacking, I/O bottlenecks exposed by I/O

contention can be identified.

2.4.2 Analysis Results

 We analyze I/O contentions from two

aspects: contentions from implicit I/O interfaces

and contentions from explicit I/O interfaces.

2.4.2.1 Analyses for Explicit I/O Behavior

lenovo
高亮
task和scheduler是polices？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 14

 Take workload #1 as an example, Figure 5

and Figure 6 show WaitingLatency and ServingLatency in k-

CMP configurations, k =1, 2, 4, 8. Data in these

two figures show that the scaling during CMP

stacking can lead to degradation in both the

serving time and the waiting time. However, the

increase in the waiting time deserves more

attention since it deteriorates much more

seriously than the serving time. As shown in

Figure 5, when we scale from 1 CMP to 8 CMPs.

The average waiting time in 8-CMP

configuration shows 128x degradation compared

with that in 1-CMP, i.e. 590ms vs. 4.55ms,

respectively.

A more detailed comparison is made between

these two kinds of latencies, and the results are

shown in Figure 7. The contrast clearly shows

that I/O contention has a much more severe

impact on the waiting time than on service time.

Bursty I/O requests in a time interval that cannot

be handled due to limited I/O resources will

accumulate, and have a severe impact on other

co-running batch jobs in I/O queues.

From these figures we could observe that for

explicit I/O jobs, I/O quantities from co-running

jobs have direct relations with the performance

Fig.5. Average waiting time in k-CMP configuration, k =1, 2, 4, 8.

Fig.6. Average serving time in k-CMP configuration, k =1, 2,
4, 8.

Fig.7. The trend of I/O performance degradation for waiting
time and service time in k-CMP configurations, k=1, 2, 4, 8.

lenovo
附注
横坐标值的含义是？

15 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

influences. The more co-runners are, the more

co-runners would suffer.

2.4.2.2 Analyses for Implicit I/O Behavior

From Figure 1, we observed that workload #3

and #4 behave differently to workload #1 and #2.

The average runtimes of #3 and #4 keep stable

until the co-runners reach 32 jobs (before 4-C).

After that, the average runtimes display sudden

degradations. The difference is actually resulted

from the usage of implicit I/O interfaces. For

memory-associated optimizations such as

implicit I/O, paging will put a high pressure on

the memory. When the accumulated memory

demands reach a certain degree (50% of the

whole system memory in our environment),

swapping for each job would happen, which is

always companied with severe I/O contentions

among co-running jobs.

The following experiments are used to study

the correlation between the memory utilization

ratio and the severity of I/O contentions for

implicit I/O workloads. These experiments are

implemented with 4 more graph workloads and

each workload has 64 graph jobs. Through

varying the value of s and e as in Table 1,

different graphs could be generated, which

would result in different memory sizes to

associate file operations.

In our experiment in Figure 8, the memory

utilization ratio ranges from 26.9% to 68.6% (the

system memory is 256G in total). The figure

draws an interesting conclusion: the more

memory we use, the more I/O quantities would

be generated and the more contentions we have

to suffer. As can be seen from the figure, if the

memory utilization is just 48.4% (or less), the

I/O contention period is only 1/250 of the entire

sampling period, indicating that the overall

system performance is not impacted by I/O

Fig.8. Correlation between memory utilization ratio and the
severalty of I/O contentions.

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 16

contention seriously. Nevertheless, on the

contrast, when the memory utilization achieves

68.6%, we have to suffer the I/O contentions

during nearly 3/4 of our sampling period

(30000s). This significant difference is caused

by I/O swapping for each job and the

corresponding I/O contentions. Notably, the

figure only displays partial data although we

have sampled the entire execution period.

From the above analyses we could learn 2

points:

 The root reason for degradations is thus

the much higher I/O demands vs

relatively low disk serving capacity,

which results in a dramatically longer I/O

waiting time in I/O queue.

 No matter for explicit I/O jobs or implicit

I/O jobs with high memory demands, they

would eventually lead to I/O contentions,

and I/O quantities have much relation

with the performance influences during

the contention.

In this paper, we propose an I/O-aware

scheduling policy. The policy uses a dynamic

analyzing process for I/O activities at a fixed

time interval. Decisions are made during these

intervals by regulating the co-running jobs, so

that overheated I/O contention could be

mitigated.

3. Dynamic I/O-Aware Scheduling Policy

Based on the above analyses, an I/O-aware

scheduling policy is proposed, which is

implemented as a user-level timeslice-based

scheduler. Timeslice-based scheduling is an

effective technique to deal with the dynamic

variation of resource contention. It has been

applied in other contention-aware schedulers,

such as bandwidth-aware scheduling[8] and LLC-

aware scheduling[9]. In this paper, we apply it

with an I/O-aware scheduling policy in order to

regulate I/O conflicts.

3.1 Framework of the Dynamic Scheduler

We have implemented the proposed dynamic

I/O-aware scheduler (called dynamic scheduler

in the rest of the paper) as a user-level scheduler

17 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

in Linux. However, it can be applied to other OS

with a slight modification in its system call

interfaces.

The framework of the dynamic scheduler and

its interface to OS are shown in Figure 9. The

dynamic scheduler is registered as an exception

handler in OS as shown in the left part of the

figure. Each time OS receives a timer signal

which is specified by the user (at least 1 second),

the exception handler will find the entry for our

dynamic scheduler and transfer the task

management control to the dynamic scheduler.

The dynamic scheduler takes over all concurrent

jobs and samples I/O information for each job.

The I/O information for each job could be

collected through reading I/O files (under

/proc/pid/io). After the sampling, I/O related

analysis and the scheduling policies could be

applied on these jobs. Two kinds of

interventions, job suspension and resumption,

are made according to some heuristics. OS then

takes over the management of both the jobs and

I/O operations once again. In this way, the

dynamic scheduling policy still could make use

of all existing optimizations for the tasks and I/O

operations in OS.

The framework of the user-level dynamic

scheduler is also presented as a pseudo code in

Figure 10. It is registered as a signal handler,

sigalarm_handler_IO, in Line 4 of the pseudo

code. This program is triggered at fixed interval

(timeslice, or quantum), which is defined by a

tunable variable, TIMESLICE, in Line 3.

3.1.1 Overall Approach

As shown in the left of Figure 9, the overall

policy in the signal handler is made up of two

parts: I/O information collector, and decision-

{
 struct itimerval IO_Interval;
 IO_Interval.it_interval.tv_sec = TIMESLICE;
 Signal(SIGALRM, sigalarm_handler_IO);
 int res = setitimer(ITIMER_REAL, & IO_Interval,
NULL);
}

1:
2:
3:
4:
5:

Procedure 1 Dynamic_IO_Aware_Scheduling

Fig.10. The dynamic scheduling policy is implemented as
a user-level timeslice-based scheduler that is triggered by
a timer signal.

Fig.9. Overall framwork for the dynamic I/O-aware scheduler.

lenovo
高亮
3？

lenovo
高亮
2？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 18

making module. The implementation of the

policy is presented in Figure 11. The two major

parts correspond to Line 6 and Line 14

respectively in the figure.

 I/O information collector. This part

mainly collects I/O information for each

job at certain intervals under the control

of OS. With such information, dynamic

scheduler could regulate the execution of

concurrent jobs under the guidance of

some heuristics in the decision-making

module.

 Decision-making module. This module

plays a regulatory role to reduce

congestion from bursty I/O without

causing excessive idleness in I/O devices.

Two kinds of scheduling decisions are

made on each job, suspension or

resumption, according to the available

capacity of I/O devices in each interval,

IO_BOUND_INTERVAL.

3.1.2 Workload

The workload needs to be scaled with the

number of jobs dynamically. Most of the batch

jobs have relatively less stringent demands on

the QoS and the performance. Newly arrived

jobs are appended to the end of the workload

queue. Core-sharing for independent jobs is not

used for batch jobs on many of the current

platforms. At any time, the number of concurrent

batch jobs wouldn’t exceed the number of cores

in the system. All batch jobs are serviced

{
 open(device_io_file) ;
 for each job in CMPs{
 io_request = Generate_IO(device_io_file);
 Overall_IO += io_request;
 }
 return Overall_IO;
}

1:
2:
3:
4:
5:
6:
7:
8:

Procedure 3 IO_Information_Collector

Fig.12. Periodical collection of I/O information.

{
 /* read IO information for each running job
 * from system device file
 */

 Overall_IO = IO_Information_Collector();

 /* for time intervals which cumulated IO requests
 * exceed the I/O capacity limit, scheduling policy
 * would be applied.
 */

 if (Overall_IO > IO_BOUND_INTERVAL) {
 Decision_Making_Module();
 }
}

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

Procedure 2 sigalarm_handler_IO

Fig.11. Major components of the I/O-aware scheduling
policy.

19 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

according to their submit order without

preemption. A job is scheduled whenever a core

becomes available.

3.2 I/O Information Collector

 With the support of OS, I/O operations of

reads and writes from each batch job are profiled

and stored in a device file periodically.

IO_Information_Collector in Figure 12 parses

the device file (under /proc/pid/io), and

determines the I/O requirement for each batch

job. It is realized by Generate_IO in Line 4.

Those jobs which have non-zero I/O demands

would be put in the candidate queue. Each CMP

has its own candidate queue. The total number of

I/O requests from all concurrent batch jobs in a

CMP is calculated and stored in Overall_IO in

Line 5. This information is useful for later

analyses and decisions made by the dynamic

scheduler.

3.3 Decision-Making Module

The Decision-Making Module targets to two

key issues: when to schedule and how to

schedule. First, the module would supervise the

whole I/O bandwidth usage and decide whether

or not it needs to interfere with the co-running

execution. Second, at the moment the bandwidth

exceeds the boundary, two kinds of measures,

either suspension or resumption, are taken for

candidate jobs. Because the entire bandwidth is

amortized equally into each CMP, the dynamic

module only cares jobs on the CMP that exceeds

its portion.

3.3.1 When to Schedule

Similar to other shared resources, the

available capacity of I/O devices in a time

interval is limited. We use a threshold value,

IO_BOUND_INTERVAL (Mbytes/second), as a

guidance for scheduling.

3.3.2 How to Schedule

Different jobs show different sensitivity to

I/O contentions. This sensitivity has much

relation with I/O quantities (I/O bandwidth

requirements) of each job. We demonstrate this

relation with the following experiments.

We designed a module, named

Sensitivity_RANKING, which is composed with

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 20

a file reading kernel. As Figure 13 shows, each

kernel performs file reading only for one time in

case of page caching. Through varying the block

size for each read, the interval between two

successive reading and the number of concurrent

kernels (inserting nops), we could get different

ranks of simultaneous I/O requests.

We illustrate the relation between

simultaneous I/O quantities and their

performance influences through 12 groups of

experiments in Figure 14. Tasks in these 12

groups of experiments are composed with

duplicated Sensitivity_RANKING kernels which

has 1.5 Mbytes ~ 26.4Mbytes/s I/O demands

per CMP respectively. Each curve in the figure

stands for the averaged runtime degradation for a

task when increasing co-running tasks from 1 to

8 CMPs. From the figure we could learn that, the

higher the averaged I/O quantity is, the easier

co-running performance degradation happens.

For the group with 26.4Mbytes/s bandwidth

requirement, it starts to degrade when there are

only two co-runners on an 8-socket, 64-core

server. For the group which has lower bandwidth

than 5.63Mbytes/s, I/O contentions will not

result in co-running performance influences.

Therefore, the sensitivity of a task to I/O

contentions has much relation with its averaged

I/O bandwidth demands. This inspires us that, to

mitigate the I/O contention problem in large-

scale platforms, the sort of high-I/O quantity

jobs (e.g. Kmeans) is worth more attention than

those tasks of lower-I/O quantity (e.g. graph).

#define block_size 32 //data size for one read
#define nops 5000 //intervals between two successive
reads

//read file only for one time in case of page caching
while (!eof(file)) {
 fgets(file, block_size);
 //use nops to adjust the bandwidth density
 for (i=0; i<nops; i++) {
 asm (“nop”);
 }
}

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

 Sensitivity_RANKING Module

Fig.13. Kernel of Sensitivity_RANKING.

Fig.14. Averaged performance degradation in k-CMP
configuration, k =1 ~ 8.

lenovo
附注
单位是M，还是MB/s ?

21 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

Regulation on high-I/O quantity tasks would

reduce the I/O bandwidth pressure, which are

beneficial for more low-I/O quantity jobs.

The pseudo code for Decision-Making

Module is shown in Figure 15. It intends to

control the total number of I/O requests in the

system so that they will not result in severe

congestion and long waiting time.

In an interval, if I/O requests exceed the

upper bound of the I/O capacity, the policy

would start to suspend some of the jobs until the

total number of I/O requests drops below

IO_BOUND_INTERVAL. The pseudo code to

make a decision on suspending a job is presented

in Line 16 to Line 29 in Figure 15. In an interval,

if the total number of I/O requests drops below

the upper bound of I/O capacity, another kind of

decision, resumption, would be made. Its pseudo

code is shown in Line 31 to Line 41. Jobs that

were suspended will be resumed for better

utilization of I/O capacity. In case of too

aggressive contentions from resumption, we’ll

let go a job at a time.

Moreover, to avoid excessive idleness in a

CMP, a procedure, Sorting_Jobs_in_Each_CMP

is used for making such a decision. It is shown in

Line 2. It sorts all jobs according to their I/O

requirements in a descending order. The policy

{
 /* Sorting Jobs descendingly according to
 * I/O qualities on each CMP
 */
 Sorting_Jobs_on_Each_CMP();

 /* Major part for Decision Maker */
 /* In case of idleness of a CMP, the policy would
 * pick out jobs which has the most I/O qualities
 * on each CMP separately
 */
 for ith CMP in CMPs {
 head[i]= the first job in the job set of the CMP;
 }
 if (Overall_IO> IO_BOUND_INTERVAL) {
 /* for a quantum in which Overall_IO exceed the
 * upper capacity of I/O, suspending part of the jobs
 */
 while (Overall_IO > IO_BOUND_INTERVAL) {
 for ith CMP in CMPs {
 if (Status(head[i]) is RUNNING) {
 Overall_IO -= head[i].IO;
 Status(head[i]) = SUSPENDED;
 }
 if (Overall_IO <= IO_BOUND_INTERVAL)
 break;
 }
 head[i]=head[i]->next;
 }
 if (Overall_IO <= IO_BOUND_INTERVAL)
 break;
 }
 }else {
 /* for a quantum in which Overall_IO is below the
 * upper capacity of I/O, resuming those jobs which
 * are suspended
 */
 for ith CMP in CMPs {
 while (head[i] != NULL) {
 if (Status(head[i]) is SUSPENDED) {
 Status(head[i]) = RESUMING;
 break;
 }
 head[i]= head[i]->next;
 }
 }
 }
}

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
35:
36:
37:
38:
39:
40:
41:
42:

Procedure 4 Decision_Making_Module

Fig.15. Two different scheduling decisions according to

the number of I/O requests.

lenovo
高亮
7?

lenovo
高亮
30?

lenovo
高亮
2?

lenovo
高亮
3?

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 22

would select the jobs that currently have the

most I/O demands pending on each CMP for

resumption.

3.4 Parameter Setting

There are two tunable variables in our

dynamic scheduler: TIMESLICE in I/O

Information Collector and

IO_BOUND_INTERVAL in Decision-Making

Module.

3.4.1 Setting of TIMESLICE

The signal handler is triggered at fixed time

intervals. The number of time quantum is

defined by TIMESLICE. It is used as the

granularity of time intervals for job scheduling.

This value is similar to the timeslice used in

Linux scheduler. Since the average I/O latency is

much higher than that of memory operations and

the algorithm is assisted with periodic analysis

of system I/O files, the cumulative time

overheads of these components could result in

substantial total time overhead. Therefore, the

value of TIMESLICE should be carefully

selected.

Two different values for TIMESLICE are

adopted in our evaluation in Section 4. For jobs

with relatively shorter execution time, e.g.

benchmarks in PARSEC with simlarge, we use a

fine-grained TIMESLICE, set at 1s. For jobs

with longer execution time (more than 1000s),

e.g. benchmarks in graph500, we use a coarse-

grained TIMESLICE, and it is set at 20s.

3.4.2 Setting of IO_BOUND_INTERVAL

Since theoretical optimal value is always

difficult to obtain in real world, this threshold

value for a specific CMP system can be obtained

through experimental results (e.g. via

experiments with Sensitivity_RANKING

Module) or some empirical values. The value in

our current policy is set at 40Mbytes/s.

3.5 Scheduling Overheads

Overheads of our proposed dynamic I/O-

aware scheduling not only determine the overall

performance of the workloads, but also the

practicability of such a policy. The total

overheads are the sum of those incurred in each

time quantum. The overheads in each quantum

23 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

depend on two major components: I/O

information collector and decision-making

module. The time complexity is O (n2) for both

of them, where n is the number of batch jobs.

Since our policy is implemented as a user-

level scheduler, the overheads of context

switching due to system calls are the most time-

consuming part. This is mainly due to the current

implementation of Linux that allows certain time

delay after it receives the signal before carrying

out job suspension. Nevertheless, the overheads

would not exceed 1% when TIMESLICE varies

from 1s to 20s.

3.6 Discussions for Insufficences

Different applications have their different

sensitivities to shared resource contention.

Accommodating such sensitivities can make the

scheduler more adaptive. This part of work is

still in progress, and would be covered in our

future work.

Our current scheduling policy aims primarily

at co-running performance. Applications with

higher I/O demands are more prone to be

suspended. This tends to hurt the fairness. Our

future work would consider more issues

including fairness in our scheduling policy.

4. Evaluations

Our dynamic I/O-aware scheduling policy is

evaluated on an 8-socket 64-core X7550 server

node with benchmarks as introduced in Table 1.

Since our dynamic scheduler is implemented

as a user-level scheduler, it will be taken over

by Linux scheduler eventually. The efficiency of

our dynamic scheduler can be evaluated through

a comparison between Linux scheduler with and

without our scheduling policy.

To study its efficiency more comprehensively,

performance improvement on the throughput of

the workloads are examined. The throughput is

calculated by the number of jobs in a workload,

and the execution time of the workload, workloadT ,

as shown in (3). For a fairer comparison of the

optimization effects on all concurrent jobs,

slowdown and average runtime are evaluated

either. The slowdown of a job, jJob is calculated

by the ratio of the runtime when it runs alone to

lenovo
高亮
对应公式中的Jobs？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 24

that when it runs in a k-CMP configuration. The

slowdown for a workload is the sum of

slowdown for all jobs as shown in (4). The

average runtime of a workload is calculated with

all jobs’ j
k cT values as in (5).

workload

Jobs
Throughput

T
 (3)

1

jN
alone

j
j k c

T
Slowdown

T

 (4)

1

N
j

k c
j

T

N
Aver runtime

 (5)

4.1 Workload

Two different types of workloads are studied

in this section:

 Duplication Type (D-TYPE). the

workload is composed of duplicated I/O

sensitive jobs that have almost the same

behavior, and will suffer serious

contention when they are running

concurrently.

 Mixed Behaviors (M-TYPE). The

workload is composed of different jobs

that are combined randomly with all

applications in Table 1.

Table 3 lists detailed information for 15

workloads, which includes benchmark name,

input data set, and the corresponding number of

jobs in each workload, denoted as batch length.

At the beginning of execution for each workload,

the server would full-load 64 single-threaded

jobs on all 64 cores or 8 multi-threaded jobs on

Table 3. Information for the workloads

Type Index Benchmark Input set Batch length

D-TYPE

#1 x264 simlarge 128
#2 x264 simlarge 256
#3 freqmine simlarge 64
#4 PS duplicated 8
#5 PS different 24
#6 KM duplicated 8
#7 graph -s 22 -e 16 64
#8 graph -s 22 -e 18 64
#9 graph -s 22 -e 16 128

M-TYPE

#10 raytrace+x264 simlarge 128
#11 parsec+graph mixed 128
#12 parsec+graph mixed 128
#13 parsec + real mixed 128
#14 parsec + real mixed 128
#15 parsec simlarge 64

lenovo
高亮
N为小写？前面的有小写

25 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

all 8 CMPs at most for each batch. No core-

sharing is permitted in our experiment. For M-

type workloads, each job would take a separate

CMP and at most 8 jobs could be handled in a

batch. More jobs will be served whenever there

are cores released and become idle.

As in Table 3, experiments with D-type are

composed with 9 workloads. Explicit I/O

interfaces are evaluated through PARSEC

benchmarks (workload #1 ~ #3) and real user

applications (workloads #4 ~ #6). Implicit I/O

interfaces are evaluated through Graph

applications (workload #7 ~ #9). Workloads #10

~ #15 are M-type, which are mixed with

PARSEC benchmarks, graph and real user

applications. Applications in a workload could

be single-threaded, or multi-threaded. Moreover,

these workloads are mixed with applications

which are either sensitive to I/O contentions or

Fig.19. Improvement on serving time for workload #1.

Fig.16. Performance improvement for D-TYPE workloads
(explict I/O jobs: PARSEC and real user app).

Fig.17. Performance improvement for D-TYPE workloads
(implicit I/O jobs: Graph).

Fig.18. Improvement on waiting time for workload #1.

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 26

not (from PARSEC or Graph applications with

lower memory demands).

4.2 Evaluation for D-TYPE workloads

4.2.1 Performance Results

Figure 16 shows the performance

improvement for 6 workloads using our dynamic

scheduler. All workloads have achieved notable

improvement in average runtime, ranging from

6.7% to 67.9%, respectively. As for the

slowdown, most of the workloads could obtain

improvement ranging from 8.3% to 73.3%,

respectively, while #2 suffers a slight

degradation by 2.9%. Moreover, most of the

workloads can benefit 7.09% ~ 40.4% on the

system throughput, while #3 and #6 do not

obtain obvious benefits from this scheduler in

their throughputs.

Compared with workloads of PARSEC,

workloads with concurrent graph traversal

algorithms have obtained much more

improvements from the dynamic scheduling in

Figure 17. The throughputs for them range from

45% to 431%. The improvements on average

slowdown range from 40% to 433%. The

average runtime could be improved by 45% to

82% with our dynamic scheduler. For #8 which

includes 64 jobs, our dynamic scheduler could

obtain the most improvements on the throughput

by 431%.

4.2.2 Performance Analysis

We take #1 for further analysis. Comparisons

for two kinds of latency, WaitingLatency and

ServingLatency , are made between Linux scheduler

with and without the optimization of the

dynamic scheduler, denoted as OS and Dynamic,

respectively in Figure 18 and Figure 19. Latency

data are sampled at intervals of 1 second. Figure

18 illustrates the effects on WaitingLatency through

inhibition of bursty I/O requests. With the

dynamic scheduler, the average waiting time is

improved by 59%, from 696ms to 286ms.

ServingLatency could also benefit from the

dynamic scheduler as shown in Figure 19. It

achieves 21% improvement with the dynamic

scheduler, from 4.95ms to 3.9ms.

27 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

4.3 Evaluations for M-TYPE workloads

4.3.1 Performance Results

In this section, we evaluate six other

workloads which are mixed with the three types

of applications in Table 1.

Since the workloads are composed of

benchmarks with different execution time. The

throughput is influenced by the jobs that have

the longest runtime. The evaluation of slowdown

can reflect the effect of optimization more

properly.

Figure 20 shows the improvement for M-

TYPE workloads. All these workloads could

achieve improvement on the slowdown, ranging

from 10.8%-97.7%. The improvement on

average runtime ranges from 9.3% to 56.2%.

Except workload #10, all other workloads see

improvements in throughput at 1.5% ~ 131.2%,

respectively. Although workload #10 doesn’t see

obvious improvement in throughput, neither

does it suffer with the dynamic scheduler.

4.3.2 Performance Analysis

We also perform analysis on the effect of the

dynamic scheduler for M-TYPE workload #11.

The comparisons of two kinds of latency,

Fig.22. Improvement on service time for workload #11.

Fig.20. Performance improvement on M-TYPE workloads.

Fig.21. Improvement on waiting time for workload #11.

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 28

ServingLatency and WaitingLatency ,are made between

Linux scheduler with and w/o optimization of

our dynamic scheduler. Data sampled at interval

of 1s are collected for these two kinds of latency

and the improvements are shown in Figure 21

and Figure 22.

Figure 21 shows the effect of the dynamic

scheduler on WaitingLatency , average waiting time

from all sampled intervals is improved by 60%

compared with that with Linux scheduler, from

243.6ms to 98ms.

ServingLatency also could benefit slightly from the

dynamic scheduler as shown in Figure 22. The

average service time is improved by 4.6%

compared with that with Linux scheduler, from

3.05ms to 2.91ms.

4.4 Discussion on Efficiency and Inefficiency

In the experiments, we observed that

workloads that have a higher sensitivity to I/O

contention would also show a sensitivity to the

dynamic scheduler. For example, jobs of x264,

raytrace and graph with “-s 22 -e 18” suffer a lot

from I/O contention when there are multiple co-

0
40
80

120

fe
rr

et

vi
ps

x2
64

sw
ap

tio
ns

vi
ps

vi
ps

fe
rr

et

sw
ap

tio vi
ps

fe
rr

et

x2
64

sw
ap

tio
ns

vi
ps

vi
ps

x2
64

sw
ap

tio
ns

fe
rr

et

fe
rr

et

x2
64

sw
ap

tio
ns

vi
ps

vi
ps

x2
64

sw
ap

tio
ns

vi
ps

vi
ps

x2
64

sw
ap

tio
ns

fe
rr

et

vi
ps

x2
64

sw
ap

tio
ns

R
un

ti
m
e
(in

 s
ec
on

ds
)

64 Jobs in the Workload of #15

OS Dynamic

Fig.24. Improvement on the runtime for workload #15.

Fig.23. Improvement on the runtime for workload #8.

29 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

running jobs. They are also much easier to

achieve more improvement from optimizations

that deal with I/O contention.

Through detailed comparisons between

Linux scheduler with and w/o the optimization

of dynamic scheduler for workloads #8 and #15

(in Figure 23 and Figure 24), we give a more

detailed analysis on the efficiency of the

dynamic scheduler.

Workload #8 is the one that benefits the most

from the dynamic scheduler. The workload is

generated by duplicating graph jobs that have

relatively higher I/O activities and longer

execution time of more than 2000s. Due to the

calling of mmap, severe implicit I/O contention

is observed throughout the entire job execution.

For this kind of workloads, the dynamic

scheduler could play a better role for mitigating

the I/O contention. All the jobs show visible

improvement in Figure 23.

Figure 24 displays contrasts for 64 jobs in

workload #15. All jobs have relatively shorter

execution time of about 30s-200s. Jobs in this

workload have diverse I/O characteristics and

with different sensitivities to I/O contention. For

example, swaptions (in black circle) from

PARSEC has less I/O contentions and

correspondingly they appear more stable in the

experiments. For this kind of workload,

relatively few options for optimizations are there.

The comparisons among jobs in this workload

reveal a very narrow gap between the runtime

using Linux scheduler and that optimized by the

dynamic scheduler.

For workloads with more than 64 jobs, I/O

contention would decrease gradually after the

first 64 jobs. If the workload is mostly composed

of shorter jobs, trivial degradation may occur for

this kind of workloads, e.g. in workload #2.

5. Related work

Contention-aware scheduling has been

investigated ever since last century. Performance

degradation caused by contention in shared

resources, such as last level cache (LLC)[23-25],

memory bandwidth[8], and memory subsystem[9]

on SMP or CMP have also been studied

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 30

extensively. Some of the researches put more

focuses on optimizations of contentions for

multithreaded applications[7,10]. Recent work in

this area has started to focus on more practical

issues of resource utilization on modern service

platforms such as CMP and cloud computing[2,4].

These work tries to enhance resource utilization

by co-locating applications with complementary

demand on system resources, e.g. one is CPU-

intensive and the other is memory-intensive.

Through estimation or mitigation of interference

from shared-memory contention, these

techniques can improve resource utilization

without losing QoS. The research efforts[26][27]

combines page coloring and XOR cache

mapping to reduce row buffer conflicts due to

inter-thread inference. A recent work[28]

introduces an empirical model for predicting

cross-core performance interference on

multicore processors, which can further be used

to guide co-runner-aware compiler

optimizations[4][29], or some domain-specific

optimizations[30][31][32], to make datacenter

applications co-locate better.

Performance bottlenecks in I/O continue to be

one of the hot research topics since last century.

There have been many solutions proposed from

different perspectives for better I/O performance.

As an effective optimization, techniques using

I/O scheduling policies can be divided into two

major types: performance-oriented scheduling

and fairness-oriented scheduling.

5.1 Performance-Oriented Scheduling

A lot of previous work on mitigating I/O

bottlenecks have concentrated on the

performance of I/O devices. Under such

premises, disk scanning is considered the core

reason for the low I/O performance. Scheduling

I/O operations to improve disk scanning is a

kind of optimization that benefits from high

concurrency among I/O operations[15][16]. Those

schemes did not take I/O contention into

consideration.

Longer disk scanning by noncontiguous I/O

requests is one of the main reasons that cause

31 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

poor disk performance. Optimization on the

sequence I/O operations by data sieving could

improve such I/O performance[17][18].

Disk caching in memory is an effective

technique to speedup I/O performance. The work

in [20] demonstrated several I/O optimizations

with shared memory for specific languages, e.g.

MPI-IO applications. Since optimization using

shared memory will take some memory

resources away from regular memory operations,

a careful trade-off needs to be made. Workloads

with Graph500 in our work are also optimized

with disk caching for I/O operations. However,

background implicit I/O activities still can cause

severe I/O contention.

Research on I/O activities in virtual machines

has also become a hot topic. The work in [33]

focuses on I/O contention among multiple guest

domains. The work points out that the fairness in

I/O resource allocation could lead to poor

performance due to the differences in I/O

requests. The work in [34] pointed out a key

shortcoming in the scheduler of current virtual

machine monitors (VMM) that may lead to

communication behavior of applications.

Solutions include techniques such as booking

pages for communication, anticipatory

scheduling for sender, etc. in order to make

VMM more aware of the characteristics of

applications.

Most I/O schedulers focus on scheduling

algorithms without taking the characteristics of

applications into consideration. In fact, the

applications may show different sensitivities to

I/O performance. FIOS in [35] is a flash I/O

scheduler that targets solid-state drives (SSD)

and takes both fairness and performance into

consideration using timeslice-based heuristic.

The most important premise of FIOS is the

discrepancy between read time and write time on

SSD. Based on this asymmetry, the scheduler

can serve both for better performance with a

preference to reads using timeslice-based

scheduling. This could do well to some

applications that used to stall by writes.

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 32

I/O throttling is a kind of optimization for

higher resource utilization, which is the most

similar to our work from the perspective of

coordinating I/O demands[36]. This technique

always is applied in services which are

comprised by tasks of different QoS. The study

in [37] is a very recent work which exploits I/O

throttling in MapReduce. However, it would

sacrifice low-QoS tasks to ensure the

performance of high-QoS tasks.

5.2 Fairness-based Scheduling

Software scheduling policies are always a

better choice for mitigating resource conflict,

including I/O contention. Among all I/O

schedulers, fairness-oriented I/O schedulers are

the main type that has been thoroughly studied

in the past. I/O scheduling policies, such as

NOOP, DEADLINE and CFQ, are among the

most commonly used polices in mainstream OS

such as Linux[22,38]. The work in [22] gives a

comparative study on all these policies. However,

fairness-based schedulers often take little or no

consideration in performance. Due to the lack of

knowledge in the characteristics of applications,

contention of shared resources are difficult to

resolve using fairness-oriented policies.

6. Conclusions

The efficiency of batch processing is

attracting renewed interests on many modern

service platforms such as clouds and clusters

because of the massive data sets need to be

processed by many new applications. Multi-

socket CMPs on those platforms also have

created new challenges and opportunities for

batch processing. For example, shared resources

contentions such as I/O contentions that could

lower the resource utilization of the platforms

and the QoS for batch-mode services running in

concurrent mode.

 In this paper, the major causes of

performance degradation due to I/O contention

are identified and studied. A dynamic I/O-aware

scheduling strategy is proposed to deal with

those issues. It could improve performance by

regulating I/O contention and reducing the

overhead caused by bursty I/O requests. The

33 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

experimental results on the large-scale server of

Dawning Linux Cluster show the effectiveness

of such a strategy in improving the throughput of

the I/O sensitive batch-mode workloads.

Meanwhile, the slowdown of workloads and the

average runtime of each user job could also

benefit from such a strategy.

Fairness is a very important and practical

issue on cluster platforms. Further researches on

this problem are our next step and would be

covered in our future work.

Acknowledgement

We thank anonymous reviewers for their

constructive and valuable comments. Our thanks

also go to Professor Shiguang Shan, Ying Liu at

ICT for their technical feedback on earlier drafts

of this paper.

References

[1] Armbrust M, Fox A, Griffith R et al. Above

the clouds: A berkeley view of cloud

computing. Technical Report UCB/EECS-

2009-28, February 2009.

[2] Mars J, Tang L, Hundt R et al. Bubble-up:

Increasing utilization in modern

warehouse scale computers via sensible

co-locations. In Proc. the 44th Int. Symp.

Microarchitecture, December 2011, pp.

248–259.

[3] Mishra A K, Hellerstein J L, Cirne W et al.

Towards characterizing cloud backend

workloads: Insights from google compute

clusters. ACM SIGMETRICS

Performance Evaluation Review, March

2010, 37(4):34-41.

[4] Tang L, Mars J, and Soffa M L, Compiling

for niceness: Mitigating contention for qos

in warehouse scale computers. In Proc.

10th Int. Symp. Code Generation and

Optimization, March 31-April 4 2012, pp.

1-12.

[5] Barroso L, Holzle U. The case for energy-

proportional computing. IEEE trans.

Computer, 2007, 40(12):33–37.

[6] Hoelzle U, Barroso L A. The Datacenter as

a computer: An introduction to the design

of warehouse-scale machines. Morgan and

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 34

Claypool Publishers, 2009.

[7] Snavely A, Tullsen D. Symbiotic

jobscheduling for a simultaneous

multithreaded processor. In Proc. the 9th

Int. Conf. Architectural Support for

Programming Languages and Operating

Systems, November 2000. 28(5): 234–244.

[8] Xu D, Wu C G, Yew P C. On mitigating

memory bandwidth contention through

bandwidth-aware scheduling. In Proc. the

19th Int. conf. Parallel Architectures and

Compilation Techniques, September 2010,

pp. 237–248.

[9] Zhuravlev S, Blagodurov S, Fedorova A.

Addressing shared resource contention in

multicore processors via scheduling. In

Proc. the 15th Int. Conf. Architectural

Support for Programming Languages and

Operating Systems, March 2010, 38(1):

129–142.

[10] Gao L, Nguyen Q H, Li L, Xue J L et al.

Thread-Sensitive Modulo Scheduling for

Multicore Processors. In Proc. the 37th Int.

Conf. Parallel Processing, September

2008, pp. 132-140.

[11] Gao L, Xue J L and Ngai T F. Loop

recreation for thread-level speculation on

multicore processors. Software -- Practice

and Engineering (SPE), John Wiley &

Sons, 2010, 40(1):45 – 72.

[12] Gao L, Li L, Xue J L and Ngai T F. Loop

recreation for thread-level speculation. In

Proc. the 13th Int. Conf. Parallel and

Distributed Systems, December 2007,

pp.1-10.

[13] Gao L, Li L, Xue J L and Ngai T F.

Exploiting speculative TLP in recursive

programs by dynamic thread prediction. In

Proc. the 18th Int. Conf. Compiler

Construction, March 2009, pp. 78 – 93.

[14] Ghoshal D, Canon R S, Ramakrishnan L.

I/O performance of virtualized cloud

environments. In Proc. the 2th Int.

Workshop on Data Intensive Computing in

the Clouds. November 2011, pp. 71–80.

35 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

[15] Jain R, Somalwar K, Werth J et al.

Scheduling parallel I/O operations in

multiple-bus systems. IEEE Trans.

Parallel and Distributed Systems, 1992,

16(4):352-362.

[16] Jain R, Somalwar K, Werth J et al.

Heuristics for scheduling I/O operations.

IEEE Trans. Parallel and Distributed

Systems, 1997, 8(3):310–320.

[17] Thakur R, Gropp W, Lusk E. Data sieving

and collective I/O in romio. In Proc. the

7th Symp. the Frontiers of Massively

Parallel Computation, February 1999, pp.

182-189.

[18] Acharya A, Uysal M, Bennett R et al.

Tuning the performance of I/O-intensive

parallel applications. In Proc. the 4th

Workshop on I/O in Parallel and

Distributed Systems, 1996, pp. 15 – 27.

[19] Lin Z, Zhou S. Parallelizing I/O intensive

applications for a workstation cluster: a

case study. ACM SIGARCH Computer

Architecture News, 1993, 21(5):15-22.

[20] Hastings A, Choudhary A. Exploiting

shared memory to improve parallel I/O

performance. In Proc. the 13th European

PVM/MPI User's Group Conf. Recent

Advances in Parallel Virtual Machine and

Message Passing Interface, September

2006. pp. 212–221.

[21] Lameter C. Local and remote memory:

Memory in a Linux/NUMA system. In

Linux Symp., July 2006.

[22] Shakshober D J. Choosing an I/O scheduler

for Red Hat® Enterprise Linux® 4 and the

2.6 kernel.

http://www.redhat.com/magazine/008jun0

5/features/schedulers/, June 2005.

[23] Jiang Y L, Shen X P et al. Analysis and

approximation of optimal co-scheduling

on chip multiprocessors. In Proc. the 17th

Int. Conf. Parallel Architectures and

Compilation Techniques, October 2008,

pp. 220–229.

[24] Zhuravlev S, Saez J C, Blagodurov S et al.

Survey of scheduling techniques for

lenovo
高亮
Journal of？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 36

addressing shared resources in multicore

processors. ACM Computing Surveys,

November 2011. 45(1): Article No. 4.

[25] Majo Z et al. Memory management in

NUMA multicore systems: Trapped

between cache contention and interconnect

overhead, In Proc. the Int. Symp. Memory

Management, June 2011, pp.11–20.

[26] Mi W, Feng X B, Xue J L and Jia Y C.

Software-Hardware Cooperative DRAM

Bank Partitioning for Chip

Multiprocessors. In Proc. the 7th Int. Conf.

Network and Parallel Computing,

September 2010, pp.329-343.

[27] Mi W, Feng X B, Jia Y C, Chen L and Xue

J L. PARBLO: Page-allocation-based

DRAM row buffer locality optimization.

Journal of Computer Science and

Technology, 2009, 24(6): 1086-1097.

[28] Zhao J C, Cui H M, Xue J L, Feng X B et

al. An empirical model for predicting

cross-core performance interference on

multicore processors. In Proc. the 22nd Int.

Conf. Parallel Architectures and

Compilation Techniques, September 2013.

[29] Bao B and Ding C. Defensive loop tiling

for shared cache. In Proc. the IEEE/ACM

Int. Symp. Code Generation and

Optimization, February 2013, pp.1-11.

[30] Cui H M, Wang L, Xue J L, Yang Y, and

Feng X B. Automatic library generation

for BLAS3 on GPUs. In Proc. the 25th

IEEE Int. Symp. Parallel and Distributed

Processing, May 2011, pp. 255-265.

[31] Cui H M, Xue J L, Wang L, Yang Y, Feng

X B et al. Extendable pattern-oriented

optimization directives. In Proc. the 9th

Annual IEEE/ACM Int. Symp. on Code

Generation and Optimization, April 2011,

pp.107-118.

[32] Cui H M, Yi Q, Xue J L, Feng X B.

Layout-oblivious compiler optimization

for matrix computations. ACM Trans.

Architecture and Code Optimization,

January 2013, 9(4): Article 35.

lenovo
高亮
页码？

37 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

[33] Ongaro D, Cox A L, Rixner S. Scheduling

I/O in virtual machine monitors. In Proc.

the 4th ACM SIGPLAN/SIGOPS Int. Conf.

Virtual Execution Environments, March

2008, pp. 1-10.

[34] Govindan S, Nath A R, Das A et al. Xen

and co.: Communication-aware CPU

scheduling for consolidated xen-based

hosting platforms. In Proc. the 3rd ACM

SIGPLAN/SIGOPS Int. Conf. Virtual

Execution Environments, June 2007, pp.

126-136.

[35] Park S and Shen K. Fios: A fair, efficient

flash I/O scheduler. In Proc. the 10th

USENIX Conf. File and Storage

Technologies, February 2012. pp. 13-13.

[36] Ryu K D, Hollingsworth J K, Keleher P J.

Efficient network and I/O throttling for

fine-grain cycle stealing. In Proc. the 2001

ACM/IEEE Conf. Supercomputing,

November 2001, p.3.

[37] Ma Siyuan, Sun Xian-He et al. I/O

Throttling and coordination for

MapReduce. Technical Report, Illinois

Institute of Technology, 2012.

[38] Domingo D. Linux 5 IO tuning guide-

performance tuning whitepaper for Red Hat

Enterprise Linux 5.2.

http://www.docstoc.com/docs/111590044/r

ed-hat-enterprise-linux-5-io-tuning-guide,

August 2013.

lenovo
高亮
这网页打不开了？

Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 38

Fang Lu participated in the

Advanced Compiler Group in

2001. She is now a Ph.D.

candidate of Institute of

Computing Technology (ICT),

Chinese Academy of Sciences

(CAS). Her research interests

include performance analysis, compiler

optimizations, and resource utilization for large-

scale servers.

Hui-Min Cui participated in

the Advanced Compiler Group

in 2003. She is now an

Associate Professor. Her

research interests include

programming language and

optimization.

Lei Wang participated in the

Advanced Compiler Group in

2002. Her research interests

include programming language

and optimization.

Lei Liu is now a Ph.D.

candidate of ICT, CAS. His

research interests include

operating system and Memory

system design and

implementation.

 Xiao-Bing Feng received

his Ph.D. degree in

computer architecture from

ICT in 1999. Now he is a

Professor and PhD

supervisor. His research

interests include compiler

optimization and binary translation.

Cheng-Gang Wu received

his Ph.D. degree in

computer architecture from

ICT in 2001. Now he is an

Associate Professor and

PhD supervisor. His

research interests include

compiler optimization and

binary translation.

Pen-Chung Yew

received his Ph.D. degree

in computer science from

University of Illinois at

Urbana-Champaign,

Computer Science in

1981. He is a Professor of

the Department of Computer Science and

Engineering, University of Minnesota at Twin-

Cities. His research interests include High-

performance and low-power multi-core

architectures, compilation techniques that

support multi-threading and speculation,

dynamic compilation, binary translation, parallel

lenovo
高亮
是State Key Laboratory of Computer Architecture的group？但2001年时就有这个重点实验室了吗？抱歉，我不太了解

39 J. Comput. Sci. & Technol., July 2013, Vol.*, No.*

machine organizations, and OS for multi-core

embedded systems.

