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Abstract  Efficiency of batch processing is becoming increasingly important for many modern 

commercial service centers, e.g. clusters and cloud computing datacenters. However, periodical 

resource contentions have become the major performance obstacles for concurrently running 

applications on mainstream CMP servers. I/O contention is such a kind of obstacle, which could 

impede both the co-running performance of batch jobs and the system throughput seriously. In this 
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paper, a dynamic I/O-aware scheduling algorithm is proposed to lower the impacts of I/O 

contention and to enhance the co-running performance in batch processing. We setup our 

environment on an 8-socket, 64-core server in Dawning Linux Cluster. 15 workloads ranging from 

8 jobs to 256 jobs are evaluated. Our experimental results showed significant improvements on the 

throughputs of the workloads, which range from 7% to 431%. Meanwhile, noticeable improvements 

on the slowdown of workloads and the average runtime for each job could be achieved. These 

results show that a well-tuned dynamic I/O-aware scheduler is beneficial for batch-mode services. It 

can also enhance the resource utilization via throughput improvement on modern service platforms.  

Keywords chip multiprocessor, batch processing, co-running, I/O contention, scheduling  (key 

words)
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1.  Introduction 

Cluster, datacenter and cloud computing have 

emerged as major computing platforms for the 

ever expanding applications today[1]. On such 

platforms, batch-mode processing (or batch 

processing, for short) is still one of the major 

service patterns1,2. It is non-interactive and has 

very different demands on both performance and 

QoS[1]. For example, some inquiry services may 

have higher demands on the responding time 

(performance), while services such as offline 

backup have higher demands on correctness. 

Harvard-MIT Data Center (HMDC) 3 , some 

commercial service providers such as Amazon 

Elastic Compute Cloud (Amazon EC2) and 

Google Cloud Platform all offer such services. 

There are three main requirements in batch 

processing: 

 Scalability in Pipelining. batched jobs are 

dynamically and continuously pumped 
                                                           
1 Migration scenario: Migrating batch processes to the aws cloud. 
http://d36cz9buwru1tt.cloudfront.net/CloudMigration-scenario-
batch-apps.pdf, August 2013. 
2Microsoft. Batch Applications—the hidden asset, August 2013. 
3 Getting started with batch processing. 
http://support.hmdc.harvard.edu/book/export/html/402, August 
2013. 

into the computing platforms, some with 

300 jobs per night. 

 Multi-Dimension Resource 

Requirements . the resource requirements 

for each job  include not only computing 

cores, but also memory, bandwidth and 

I/O related resources [3].  

 Scalability in Data Sets.  due to the 

development of web applications, big 

input data sets have become one of the 

most remarkable characters. 

These requirements have created higher 

demands on the server system capacity, and thus 

stimulated the development of parallel server 

systems. Servers have evolved from the former 

SMP architectures to the current CMP 

architectures, which house multiple sockets and 

more computing units. On such multi-socket 

CMP systems, shared resource contentions 

become major concerns because, if left 

unattended, the potential contentions on shared 

resources among competing jobs running on 

different cores could seriously impede the co-
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running performance and the overall system 

throughput. Hence, resolving such contentions 

have become one of the most important issues 

for such systems [2-13]. 

For many applications, shared I/O-related 

resource is a significant contention point[14]. In 

fact, I/O bottleneck has been known on parallel 

computing systems for some time[14-18,19]. With 

decades of technological innovations, 

improvement on I/O latency still lags 

significantly behind that of CPU and memory. 

There have been many techniques proposed to 

improve I/O performance by rescheduling I/O 

requests[15-18], or using shared memory as disk 

cache [20]. However, no matter for I/O intensive 

applications, or other types of applications which 

rely on some data input files, I/O contention is 

still one of the most harassing problems in batch 

services. Their co-running performances are 

much more prone to I/O conflicts because of the 

concurrent file operations. Therefore, more work 

still needs to be done to mitigate I/O contention 

on large-scale multi-socket CMP systems.  

In this paper, a new approach using a 

dynamic timeslice-based (quantum-based) I/O-

aware scheduling policy is proposed to enhance 

the I/O performance on multi-socket CMP 

systems. It is done through regulating I/O 

contention dynamically. We evaluate the 

effectiveness of the scheduler from three aspects: 

the throughput, the workload slowdown, and the 

average runtime for each job. The evaluations 

are setup on an 8-socket, 64-core CMP server 

node. 15 workloads, which  range from 8 jobs to 

256 jobs dynamically, are experimented on this 

platform. Experimental results show that the 

proposed scheduler could achieve 7% to 431% 

improvements on the throughput of all 

workloads. Meanwhile, noticeable 

improvements on the slowdown of workloads 

and the average runtime for each job could be 

obtained.  

Improving the co-running performance of 

CMP systems has many practical implications 

for large web applications with expanding data 
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sets. From this perspective, we made the 

following contributions in this paper: 

 A methodology has been proposed that 

could isolate the impacts of inter-socket 

I/O contention from intra-socket 

resources contentions, such as CPU and 

memories, and give a more precise 

qualification of the impacts from global 

I/O contention on large-scale multi-socket 

CMP systems. 

  An effective dynamic scheduling policy 

for batch processing is proposed to 

mitigate global I/O contention. The policy 

is adaptive to the scalability of batch 

applications and the dynamic variation of 

periodical I/O contentions.  

 Through evaluations on the throughput, 

the slowdown of the workloads and the 

average runtime for each user job, the 

proposed dynamic policy is shown to be 

effective and beneficial for batch services 

which are sensitive to I/O contentions. 

The rest of the paper is organized as follows. 

The impacts of global I/O contention on co-

located batch-processing jobs are examined in 

Section 2. Section 3 presents our proposed 

dynamic I/O-aware scheduling policy. 

Experiments and evaluations are detailed in 

Section 4. Related work is covered in Section 5. 

Section 6 summarizes our work and presents 

some possible future work. 

2.  Conflicts in Co-Location 

Shared resource contentions among co-

running applications are the major reasons for 

the performance degradation on CMP systems. 

However, the effects of contention from various 

shared resources such as CPU, last-level shared 

cache (LLC), memories and I/O systems are all 

juxtaposed in a very complex way. It's difficult 

to distinguish one kind of contention from 

another on such systems. In this section, we use 

a methodology of CMP stacking to distinguish 

the impacts of global I/O contention from other 

shared resources contained within a socket. The 
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following two constraints are useful to isolate 

such I/O contentions. 

 Confinement. The overall resource 

requirements of a batch job, including 

computing cores, private and shared 

cache memories, as well as memory 

bandwidth, are satisfied within each CMP 

(i.e. confined within each socket). 

Although there could be multiple 

concurrent batch jobs sharing the 

resources of the same CMP (in a socket), 

the inter-socket I/O contention becomes 

the most outstanding feature for batch 

jobs running on different CMPs 

considering the much higher costs of I/O 

operations versus lower costs of other 

resource contentions. 

 Sustainability. The overall resource 

requirements of a job would abide by the 

confinement rule during the execution. It 

will not ask for other inter-socket 

resources except I/O demands during its 

entire execution. 

The constrains of "confinement" and 

"sustainability " can be guaranteed in existing 

systems with NUMA. In particular, for Linux, 

the default resource allocation strategy (node-

local) would keep a job's resource consumption 

as "local", i.e., its memory would be allocated to 

the local memory of its core(s) on NUMA 

architecture[21]. Furthermore, the allocation 

strategy also keeps the resource consumption as 

"local" throughout the job execution. Therefore, 

the premises of CMP stacking could be satisfied, 

and consequently, inter-socket I/O contention 

turns into the critical issue for co-running 

performance degradation. We would give a 

further discussion for the leading role of the 

inter-socket I/O contention in Section  2.3.  

CMP stacking is setup to illuminate the 

negative impacts of I/O contentions on batch 

processing. However, our solution would target 

to all concurrent jobs, which includes not only 

inter-socket I/O contentions, but also that inside 

sockets. 
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2.1  CMP Stacking 

In our methodology, we gradually increase 

the intensity of I/O contention by adding CMPs 

one by one (i.e. stacking up CMPs). Each CMP 

is fully loaded with concurrent batch jobs on 

each core. By the two constraints of 

“confinement” and “sustainability”, although 

jobs on the same CMP still suffer from resource 

contentions within the CMP, the global I/O 

contention becomes the major inter-socket 

interferences during the process of stacking up 

CMPs. For the easiness of our presentation, we 

use the following definitions.   

For a job, jJob , on CMP p,  

j
aloneT : It is the  execution time of jJob  when it 

runs alone, i.e. without any resource contention. 

1
j
cT  : It is the execution time of jJob when it 

co-runs with other concurrent batch jobs on the 

same CMP (denoted as 1-c in the subscript of T), 

while no other jobs are co-running on other 

CMPs concurrently. It is different from 

j
aloneT because of possible contentions within the 

CMP. 

j
k cT  : It is the execution time of jJob when 

there are k CMPs running concurrent batch jobs 

(denoted as k-c in the subscript of T). It will 

change when the number of  concurrent jobs on 

other CMPs changes. 

Table 1. Description for appLications 

 Application Type Description 

Real user 
application 

Paper Similar 
(abbr. PS) 

2-threaded A program which compares a paper with the other K papers 
concurrently, while K is 2 in our work. 

Kmeans 
clustering 

(abbr. KM) 

8-threaded A key algorithm from data mining which partitions n 
observations into k clusters. 

Graph500 graph 
1-thread BFS algorithm from Graph500. The graph for searching is 

generated with two parameters, s and e, which stand for a 
graph’s scale and edge factor, respectively. 

PARSEC 
benchmarks 

x264 1-thread encoding video 
vips 1-thread image processing library 

freqmine 1-thread data mining problem 
bodytrack 1-thread tracker of the 3D pose of a human body 
raytrace 1-thread Tracing the path of light and generating images 
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The performance degradation due to other 

concurrent jobs running on other k-1 CMPs 

could be measured by the difference between 

1
j
cT   and j

k cT  . It could be clearly ascribed to the 

inter-socket I/O contentions. We use normalized 

run time for the comparison as in (1). 

1

_
j

k c
j
c

T
normalized runtime

T




                         (1) 

2.2  Benchmarks and Platforms 

Before presenting experiments with our 

methodology, we introduce the benchmarks and 

the platform as follows. 

2.2.1  Benchmarks 

More and more applications today become 

increasingly sensitive to I/O contentions due to 

their fast expanding input data sets. In this 

section, we use duplicated copies of a 

benchmark with the same input sets to 

demonstrate I/O contentions. This could 

facilitate our analyses because they have the 

same demands on all resources. More 

complicated and randomly generated workload 

types are covered and examined in Section 4.  

Different I/O APIs can lead to different forms 

of I/O contentions. We have observed two types 

of I/O contentions from our experiments:   

 Explicit I/O. It is caused by the usage of 

API such as  fread and fwrite, which 

contends for I/O related resources directly 

and as a result, suffers from I/O conflicts 

directly.  

 Implicit I/O. It is incurred by the memory 

associated file operations (e.g. mmap), 

which impose a high pressure on the main 

memory. Thus, swapping is usually 

involved in these operations, leading to 

I/O contentions.  

Considering the above differences, we use 

three kinds of applications to demonstrate the 

side-effects of I/O contentions in Table 1:  

 Real User Application. Two real 

applications from regular users in 

Dawning Cluster are adopted in our work, 

which are paper similarity examination, 

and Kmeans cluster algorithm. These two 
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applications employ explicit I/O APIs in 

their file operations.  

 Benchmarks from Graph500 4 . Graph 

traversal algorithms with sequential 

compressed-sparse-row implementation 

are used. The amount of I/O requests in 

the benchmark is proportionate to the 

graph size it traverses. The graph for 

searching is generated with two 

parameters, s and e. They correspond to a 

graph’s scale and edge factor, 

respectively. For example, the graph 

created with ”-s 22 -e 18” is much larger 

than that with ”-s 22 -e 16”, so does the 

number of I/O requests. The usage of 

mmap in the application would lead to 

continuous implicit I/O behaviors.  

 Benchmarks from the Princeton 

Application Repository for Shared-

Memory Computers (PARSEC 3.1)5. This 

package is made up of more than ten 

                                                           
4 http://www.graph500.org/, August 2013. 
5 http://parsec.cs.princeton.edu/, August 2013. 
 

applications, which have diverse 

sensitivities to I/O contentions due to 

their different sizes of data input files and 

different periodic I/O characteristics. 

Contentions from explicit I/O APIs could 

be demonstrated with this package. 

Among all data sets, the medium data set 

of simlarge and the largest data set of 

native are used in our work. We only 

introduce five benchmarks which are 

relatively more sensitive to I/O 

contentions as shown in Table 1. We 

would include some benchmarks such as 

swaptions which are less sensitive to I/O 

contention in Section 4 for more thorough 

evaluations. 

A workload is composed of one or more 

batch jobs. For a clearer analysis, in this section, 

we use single-threaded jobs as our examples to 

demonstrate the I/O contentions, and the number 

of concurrently running jobs in the workload 

ranges from 8 to 64 jobs on a server node.  Note 

that our CMP stacking method and our 
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scheduling solution themselves do not have 

these limitations. We would cover both single-

threaded job and multi-threaded jobs in later 

sections. Dynamically increasing the number of 

batch jobs for the workload is also permitted. All 

these issues would be discussed and evaluated in 

Section 3 and Section 4.   

2.2.2  Platform 

The server node used in our work is a CMP 

system integrated with Intel® Xeon® X7550 

processors in Dawning Linux Cluster. It is based 

on Nehalem architecture. Most of the state-of-art 

high-performance CMP systems from Intel® are 

evolved from this type of architecture. The CMP 

server is an 8-socket CMP server node with 

NUMA support. Each of the CMP (socket) has 8 

cores and 32GB local memory. It uses Linux OS 

2.6.32 for X86-64. 

2.3  Performance Degradation from I/O 

Contention  

2.3.1 Influences from Inter-Socket I/O 

Contentions 

In this section, we use CMP stacking to 

illustrate the performance degradation from I/O 

contention. For a clearer description, CMP 

stacking is experimented with four workloads, 

which are composed with either duplicated 

explicit I/O jobs (x264) or duplicated implicit 

I/O jobs (graph) in this section. CMP stacking 

for each workload includes four steps: one-CMP 

running, two-CMP running, four-CMP running 

and eight-CMP running. Each step runs 8, 16, 32, 

and 64 jobs, respectively. During each step, we 

full-load all cores with 8 jobs on each co-

running CMP. Through this process, we could 

observe the severe performance impacts from 

inter-socket I/O contentions. 

Table 2. Workloads and Input Set

Benchmark Input set 

#1 x264 simlarge 

#2 x264 native 

#3 graph -s 22 -e 16 

#4 graph -s 22 -e 18 
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Table 2 lists the detailed information for each 

workload that is generated from two benchmarks, 

x264 and graph.  

There are four curves in Figure 1. Each curve 

stands for the normalized runtime of each job in 

the four steps (denoted as k-c in Figure 1, or k-

CMP in later figures). Take workload #1 in 

Table 2 as an example, the average runtime for a 

x264 job is 7 seconds (denoted as 7s) on 1 CMP, 

while it degrades to 122s when co-running with 

other 56 jobs on seven other CMPs. It is about 

16x degradation due to the increased I/O 

contention.  

Data in these figures display similar trend in 

performance degradation for all four workloads. 

That is, each job’s performance will degrade 

with CMP stacking. The more co-runners are, 

the more they would suffer from I/O contentions.  

2.3.2 Discussion for Other Influences 

It is worth noticing that inter-socket I/O 

contention is not the only type among different 

sockets. Cache coherency （CC） still plays a 

role among CMPs for some cache-miss intensive 

tasks. However, CC cost is much lower than that 

from I/O contentions. Therefore, we ignore CC 

interferences in our work according to the 

following experiments.  

Figure 2 displays experiments for the inter-

socket CC costs on our Intel Nehalem server  

system, which uses MESIF6 as its cache protocol. 

The maximum CC costs is about 33.7%, which 

are generated from the most serious LLC misses 

（6.90/Cycle per CMP） during 8-C co-running. 

This is much more trivial than 2x ~ 16x 

degradations from I/O contentions in Figure 1.    

                                                           
6 http://en.wikipedia.org/wiki/MESIF_protocol, August 2013. 

 
Fig.1. Inter-socket performance impacts from I/O 
contentions while increasing the number of CMPs. 

Fig.2. Performance degradation from inter-socket CC 
costs in k-CMP configuration, k =1, 2, 4, 6, 8. 
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The experiments in Figure 2 are performed 

with CMP stacking, while each CMP runs  LLC-

miss intensive kernels as in Figure 3. All 

experiments comply with the two constrains of 

“confinement” and “sustainability”. Each data 

copy in the kernel can produce a read miss and a 

write miss. Through varying the number of nops, 

we could get different LLC miss rate inside a 

CMP. CMP LLC miss rate at 6.90/cycle is the 

maximum number which can be generated on 

the server. During the process of CMP stacking 

up, intensive LLC misses in a CMP would bring 

forth cache coherency information globally, 

which result in inter-socket performance 

influences. In such circumstance, CC cost is the 

most outstanding inter-socket performance 

influences. Each curve in the figure stands for 

the runtime degradation of the kernel during the 

CMP stacking process.  Data in the figure 

displays that the more the LLC miss rate is , the 

more CC cost is. However, the maximum 

performance influences from CC (by LLC miss 

rate 6.90/Cycle) is only about 33.7%  during 8-C 

running.  

Above all, we ignore CC costs and only focus 

on costs from I/O contentions in our paper .   

2.4  Analysis for I/O Contention 

2.4.1  Analysis Methodology 

The analyses of global I/O contention are 

made with the support of Linux OS. For each 

I/O request serviced by the local storage disk, 

the latency can be divided into two parts: the I/O 

waiting time and the hard disk serving time by 

the I/O devices,  as show in Figure 4.  

Fig.4. Two parts for the latency of  I/O requests. 

#define ITERATION 1000 //repeat the experiments
#define CACHELINE 64   // the cache line size
#define COL CACHELINE/sizeof(int)
#define ROW (MEM_SIZE/COL*sizeof(int))
int a[ROW][COL].b[ROW][COL];
#define nops 5000 //intervals between two successive 
reads

//memory allocation
   Initialization(a, b);
for (iter=0; iter<ITERATION; Iter++){
//LLC cache miss kernel
      for (i=0; i<ROW; i++) {
            b[i][0] = a[I][0]; 
            //use nops to adjust the density of LLC misses
            for (k=0; k<nops;k++) {
                asm(“nops”);
            }
       }
}

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

Procedure LLCMISS_Pressure

Fig.3.  LLC-miss kernel.  
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         _ Serving WaitingIO Latency Latency Latency      (2) 

ServingLatency is the actual service time of a I/O 

request by the I/O device. This latency is 

decided by both the decision making of disk 

controller and the specific I/O devices.  

WaitingLatency is the handling time of the software 

scheduler for a I/O request, and the time costs in 

I/O queues. The default task and I/O scheduler 

are completely fair schedule( CFS ) policies on  

our Linux OS[22]. It also includes the extra 

overhead resulted from bursts of I/O requests. 

I/O latency is calculated with these two parts 

as in (2). 

The analysis is made with a Linux user utility, 

iostat, a statistical tool for I/O devices in Linux. 

This tool samples the status of I/O devices at a 

fixed time interval specified by the user. In our 

experiments, we set the sampling interval to be 1 

second. 

For each I/O request, _IO Latency  can be 

calculated from the entry await in the report 

generated by iostat. It includes both waiting time 

and hard disk serving time for each I/O device 

operation. The entry svctm in the report stands 

for the service time and the software waiting 

time can be calculated accordingly. By studying 

changes in these two parts in the process of CMP 

stacking, I/O bottlenecks exposed by I/O 

contention can be identified. 

2.4.2  Analysis Results 

    We analyze I/O contentions from two 

aspects: contentions from implicit I/O interfaces 

and contentions from explicit I/O interfaces.   

2.4.2.1 Analyses for Explicit I/O Behavior  

lenovo
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 Take workload #1 as an example, Figure 5 

and Figure 6 show WaitingLatency and ServingLatency in k-

CMP configurations, k =1, 2, 4, 8. Data in these 

two figures show that the scaling during CMP 

stacking can lead to degradation in both the 

serving time and the waiting time. However, the 

increase in the waiting time deserves more 

attention since it deteriorates much more 

seriously than the serving time. As shown in 

Figure 5, when we scale from 1 CMP to 8 CMPs. 

The average waiting time in 8-CMP 

configuration shows 128x degradation compared 

with that in 1-CMP, i.e. 590ms vs. 4.55ms, 

respectively. 

A more detailed comparison is made between 

these two kinds of latencies, and the results are 

shown in Figure 7. The contrast clearly shows 

that I/O contention has a much more severe 

impact on the waiting time than on service time. 

Bursty I/O requests in a time interval that cannot 

be handled due to limited I/O resources will 

accumulate, and have a severe impact on other 

co-running batch jobs in I/O queues.   

From these figures we could observe that for 

explicit I/O jobs, I/O quantities from co-running 

jobs have direct relations with the performance 

Fig.5. Average waiting time in k-CMP configuration, k =1, 2, 4, 8.

Fig.6. Average serving time in k-CMP configuration, k =1, 2, 
4, 8. 

Fig.7. The trend of I/O performance degradation for waiting 
time and service time in k-CMP configurations, k=1, 2, 4, 8. 
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influences. The more co-runners are, the more 

co-runners would suffer.  

2.4.2.2 Analyses for Implicit I/O Behavior  

From Figure 1, we observed that workload #3 

and #4 behave differently to workload #1 and #2. 

The average runtimes of #3 and #4  keep stable 

until the co-runners reach 32 jobs (before 4-C). 

After that, the average runtimes display sudden 

degradations. The difference is actually resulted 

from the usage of implicit I/O interfaces. For 

memory-associated optimizations such as 

implicit I/O, paging will put a high pressure on 

the memory. When the accumulated memory 

demands reach a certain degree (50% of the 

whole system memory in our environment), 

swapping for each job would happen, which is 

always companied with severe I/O contentions 

among co-running jobs.  

The following experiments are used to study 

the correlation between the memory utilization 

ratio and the severity of I/O contentions for 

implicit I/O workloads. These experiments are 

implemented with 4 more graph workloads and 

each workload has 64 graph jobs. Through 

varying the value of s and e as in Table 1, 

different graphs could be generated, which 

would result in different memory sizes to 

associate file operations.  

In our experiment in Figure 8, the memory 

utilization ratio ranges from 26.9% to 68.6% (the 

system memory is 256G in total). The figure 

draws an interesting conclusion: the more 

memory we use, the more I/O quantities would 

be generated and the more contentions we have 

to suffer. As can be seen from the figure, if the 

memory utilization is just 48.4% (or less), the 

I/O contention period is only 1/250 of the entire 

sampling period, indicating that the overall 

system performance is not impacted by I/O 

Fig.8. Correlation between memory utilization ratio and the 
severalty of I/O contentions.  
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contention seriously. Nevertheless, on the 

contrast, when the memory utilization achieves 

68.6%, we have to suffer the I/O contentions 

during nearly 3/4 of our sampling period 

(30000s). This significant difference is caused 

by I/O swapping for each job and the 

corresponding I/O contentions. Notably, the 

figure only displays partial data although we 

have sampled the entire execution period. 

From the above analyses we could learn 2 

points: 

 The root reason for degradations is thus 

the much higher I/O demands vs 

relatively low disk serving capacity, 

which results in a dramatically longer I/O 

waiting time in I/O queue.  

 No matter for explicit I/O jobs or implicit 

I/O jobs with high memory demands, they 

would eventually lead to I/O contentions, 

and I/O quantities have much relation 

with the performance influences during 

the contention. 

In this paper, we propose an I/O-aware 

scheduling policy. The policy uses a dynamic 

analyzing process for I/O activities at a fixed 

time interval. Decisions are made during these 

intervals by regulating the co-running jobs, so 

that overheated I/O contention could be 

mitigated.  

3.  Dynamic I/O-Aware Scheduling Policy  

Based on the above analyses, an I/O-aware 

scheduling policy is proposed, which is 

implemented as a user-level timeslice-based 

scheduler. Timeslice-based scheduling is an 

effective technique to deal with the dynamic 

variation of resource contention. It has been 

applied in other contention-aware schedulers, 

such as bandwidth-aware scheduling[8] and LLC-

aware scheduling[9]. In this paper, we apply it 

with an I/O-aware scheduling policy in order to 

regulate I/O conflicts. 

3.1   Framework of the Dynamic Scheduler  

We have implemented the proposed dynamic 

I/O-aware scheduler (called dynamic scheduler 

in the rest of the paper) as a user-level scheduler 
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in Linux. However, it can be applied to other OS 

with a slight modification in its system call 

interfaces. 

The framework of the dynamic scheduler and 

its interface to OS are shown in Figure 9. The 

dynamic scheduler is registered as an exception 

handler in OS as shown in the left part of  the 

figure. Each time OS receives a timer signal 

which is specified by the user (at least 1 second), 

the exception handler will find the entry for our 

dynamic scheduler and transfer the task 

management control to the dynamic scheduler. 

The dynamic scheduler takes over all concurrent 

jobs and samples I/O information for each job. 

The I/O information for each job could be 

collected through reading I/O files (under 

/proc/pid/io). After the sampling, I/O related 

analysis and the scheduling policies could be 

applied on these jobs. Two kinds of 

interventions, job suspension and resumption, 

are made according to some heuristics. OS then 

takes over the management of both the jobs and 

I/O operations once again. In this way, the 

dynamic scheduling policy still could make use 

of all existing optimizations for the tasks and I/O 

operations in OS.   

The framework of the user-level dynamic 

scheduler is also presented as a pseudo code in 

Figure 10. It is registered as a signal handler, 

sigalarm_handler_IO, in Line 4 of the pseudo 

code. This program is triggered at fixed interval 

(timeslice, or quantum), which is defined by a 

tunable variable, TIMESLICE, in Line 3. 

3.1.1  Overall Approach 

As shown in the left of Figure 9, the overall 

policy in the signal handler is made up of two 

parts: I/O information collector, and decision-

{
  struct itimerval IO_Interval;
  IO_Interval.it_interval.tv_sec = TIMESLICE;
  Signal(SIGALRM, sigalarm_handler_IO);
  int res = setitimer(ITIMER_REAL, & IO_Interval, 
NULL);  
}

1:
2:
3:
4:
5:

Procedure 1 Dynamic_IO_Aware_Scheduling

Fig.10. The dynamic scheduling policy is implemented as 
a user-level timeslice-based scheduler that is triggered by 
a timer signal. 

 
Fig.9. Overall framwork for the dynamic I/O-aware scheduler. 
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making module. The implementation of the 

policy is presented in Figure 11. The two major 

parts correspond to Line 6 and Line 14 

respectively in the figure. 

 I/O information collector. This part 

mainly collects I/O information for each 

job at certain intervals under the control 

of OS. With such information, dynamic 

scheduler could regulate the execution of 

concurrent jobs under the guidance of 

some heuristics in the decision-making 

module.  

 Decision-making module. This module 

plays a regulatory role to reduce 

congestion from bursty I/O without 

causing excessive idleness in I/O devices. 

Two kinds of scheduling decisions are 

made on each job, suspension or 

resumption, according to the available 

capacity of I/O devices in each interval, 

IO_BOUND_INTERVAL.  

3.1.2  Workload 

The workload needs to be scaled with the 

number of jobs dynamically. Most of the batch 

jobs have relatively less stringent demands on 

the QoS and the performance. Newly arrived 

jobs are appended to the end of the workload 

queue. Core-sharing for independent jobs is not 

used for batch jobs on many of the current 

platforms. At any time, the number of concurrent 

batch jobs wouldn’t exceed the number of cores 

in the system. All batch jobs are serviced 

{
    open(device_io_file) ;
     for each job in CMPs{
           io_request = Generate_IO(device_io_file);
           Overall_IO +=  io_request;
     }
    return Overall_IO;
}

1:
2:
3:
4:
5:
6:
7:
8:

Procedure 3  IO_Information_Collector

Fig.12. Periodical collection of I/O information. 

{
    /* read IO information for each running job 
     * from system device file
     */
      
    Overall_IO = IO_Information_Collector();        
      
     /* for time intervals which cumulated IO requests
      * exceed the I/O capacity limit, scheduling policy
      * would be applied.      
      */
       
      if  (Overall_IO > IO_BOUND_INTERVAL) {
           Decision_Making_Module();
      }
}

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

Procedure 2 sigalarm_handler_IO

Fig.11. Major components of the I/O-aware scheduling 
policy. 



19                                                                                                         J. Comput. Sci. & Technol., July 2013, Vol.*, No.* 

 
 
 

according to their submit order without 

preemption. A job is scheduled whenever a core 

becomes available.  

3.2   I/O Information Collector 

  With the support of OS, I/O operations of 

reads and writes from each batch job are profiled 

and stored in a device file periodically. 

IO_Information_Collector in Figure 12 parses 

the device file (under /proc/pid/io), and 

determines the I/O requirement for each batch 

job. It is realized by Generate_IO in Line 4. 

Those jobs which have non-zero I/O demands 

would be put in the candidate queue. Each CMP 

has its own candidate queue. The total number of 

I/O requests from all concurrent batch jobs in a 

CMP is calculated and stored in Overall_IO in 

Line 5. This information is useful for later 

analyses and decisions made by the dynamic 

scheduler.  

3.3   Decision-Making Module  

The Decision-Making Module targets to two 

key issues: when to schedule and how to 

schedule. First, the module would supervise the 

whole I/O bandwidth usage and decide whether 

or not it needs to interfere with the co-running 

execution. Second, at the moment the bandwidth 

exceeds the boundary, two kinds of measures, 

either suspension or resumption, are taken for 

candidate jobs. Because the entire bandwidth is 

amortized equally into each CMP, the dynamic 

module only cares jobs on the CMP that exceeds 

its portion.  

3.3.1 When to Schedule 

Similar to other shared resources, the 

available capacity of I/O devices in a time 

interval is limited. We use a threshold value, 

IO_BOUND_INTERVAL (Mbytes/second), as a 

guidance for scheduling. 

3.3.2 How to Schedule 

Different jobs show different sensitivity to 

I/O contentions. This sensitivity has much 

relation with I/O quantities (I/O bandwidth 

requirements) of each job. We demonstrate this 

relation with the following experiments.  

We designed a module, named 

Sensitivity_RANKING, which is composed with 
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a file reading kernel. As Figure 13 shows, each 

kernel performs file reading only for one time in 

case of page caching. Through varying the block 

size for each read, the interval between two 

successive reading and the number of concurrent 

kernels (inserting nops), we could get different 

ranks of simultaneous I/O requests.   

We illustrate the relation between 

simultaneous I/O quantities and their 

performance influences through 12 groups of 

experiments in Figure 14. Tasks in these 12 

groups of experiments are composed with 

duplicated Sensitivity_RANKING kernels which 

has 1.5 Mbytes ~ 26.4Mbytes/s I/O demands  

per CMP respectively. Each curve in the figure 

stands for the averaged runtime degradation for a 

task when increasing co-running tasks from 1 to 

8 CMPs. From the figure we could learn that, the 

higher the averaged I/O quantity is, the easier 

co-running performance degradation happens. 

For the group with 26.4Mbytes/s bandwidth 

requirement, it starts to degrade when there are 

only two co-runners on an 8-socket, 64-core 

server. For the group which has lower bandwidth 

than 5.63Mbytes/s, I/O contentions will not 

result in co-running performance influences.   

Therefore, the sensitivity of a task to I/O 

contentions has much relation with its averaged 

I/O bandwidth demands. This inspires us that, to 

mitigate the I/O contention problem in large-

scale platforms, the sort of high-I/O quantity 

jobs (e.g. Kmeans) is worth more attention than 

those tasks of lower-I/O quantity (e.g. graph). 

#define block_size 32 //data size for one read
#define nops 5000 //intervals between two successive 
reads

//read file only for one time in case of page caching
while (!eof(file)) {
           fgets(file, block_size); 
           //use nops to adjust the bandwidth density
           for (i=0; i<nops; i++) { 
                 asm (“nop”);
           }
}

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

           Sensitivity_RANKING Module

Fig.13. Kernel of Sensitivity_RANKING. 

Fig.14. Averaged performance degradation in k-CMP 
configuration, k =1 ~ 8. 
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Regulation on high-I/O quantity tasks would 

reduce the I/O bandwidth pressure, which are 

beneficial for more low-I/O quantity jobs. 

The pseudo code for Decision-Making 

Module is shown in Figure 15. It intends to 

control the total number of I/O requests in the 

system so that they will not result in severe 

congestion and long waiting time.  

In an interval, if I/O requests exceed the 

upper bound of the I/O capacity, the policy 

would start to suspend some of the jobs until the 

total number of I/O requests drops below 

IO_BOUND_INTERVAL. The pseudo code to 

make a decision on suspending a job is presented 

in Line 16 to Line 29 in Figure 15. In an interval, 

if the total number of I/O requests drops below 

the upper bound of I/O capacity, another kind of 

decision, resumption, would be made. Its pseudo 

code is shown in Line 31 to Line 41. Jobs that 

were suspended will be resumed for better 

utilization of I/O capacity. In case of too 

aggressive contentions from resumption, we’ll 

let go a job at a time.  

Moreover, to avoid excessive idleness in a 

CMP, a procedure, Sorting_Jobs_in_Each_CMP 

is used for making such a decision. It is shown in 

Line 2. It sorts all jobs according to their I/O 

requirements in a descending order. The policy 

{
        /* Sorting Jobs descendingly according to 
         * I/O qualities on each CMP
         */             
        Sorting_Jobs_on_Each_CMP();

       /* Major part for Decision Maker */
       /* In case of idleness of a CMP, the policy would
        * pick out jobs which has the most I/O qualities
        * on each CMP separately
        */
      for ith CMP in  CMPs {
            head[i]= the first job in the  job set of the CMP;
      }
      if (Overall_IO> IO_BOUND_INTERVAL) {
           /* for a quantum in which Overall_IO exceed the 
            * upper capacity of I/O, suspending part of the jobs
            */
            while  (Overall_IO > IO_BOUND_INTERVAL) {
                 for ith CMP in  CMPs {
                      if ( Status(head[i]) is RUNNING) {
                         Overall_IO -= head[i].IO; 
                         Status(head[i]) = SUSPENDED;
                     }
                     if (Overall_IO <= IO_BOUND_INTERVAL)
                        break;
                     }
                     head[i]=head[i]->next; 
                }   
                if (Overall_IO <= IO_BOUND_INTERVAL)
                        break;
           }  
     }else  {
           /* for a quantum in which Overall_IO is below  the 
            * upper capacity of I/O, resuming those  jobs which
            * are suspended
            */
            for ith CMP in  CMPs {
                 while (head[i] != NULL) {
                        if ( Status(head[i]) is SUSPENDED) {
                             Status(head[i]) = RESUMING;
                             break;
                        }
                        head[i]= head[i]->next;
                 } 
            }    
      }          
}

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
35:
36:
37:
38:
39:
40:
41:
42:

Procedure 4 Decision_Making_Module

 
Fig.15. Two different scheduling decisions according to 

the number of I/O requests. 
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would select the jobs that currently have the 

most I/O demands pending on each CMP for 

resumption. 

3.4  Parameter Setting    

There are two tunable variables in our 

dynamic scheduler: TIMESLICE in I/O 

Information Collector and 

IO_BOUND_INTERVAL in Decision-Making 

Module. 

3.4.1  Setting of TIMESLICE  

The signal handler is triggered at fixed time 

intervals. The number of time quantum is 

defined by TIMESLICE.  It is used as the 

granularity of time intervals for job scheduling. 

This value is similar to the timeslice used in 

Linux scheduler. Since the average I/O latency is 

much higher than that of memory operations and 

the algorithm is assisted with periodic analysis 

of system I/O files, the cumulative time 

overheads of these components could result in 

substantial total time overhead. Therefore, the 

value of TIMESLICE should be carefully 

selected. 

Two different values for TIMESLICE are 

adopted in our evaluation in Section 4. For jobs 

with relatively shorter execution time, e.g. 

benchmarks in PARSEC with simlarge, we use a 

fine-grained TIMESLICE, set at 1s. For jobs 

with longer execution time (more than 1000s), 

e.g. benchmarks in graph500, we use a coarse-

grained TIMESLICE, and it is set at 20s. 

3.4.2  Setting of IO_BOUND_INTERVAL  

Since theoretical optimal value is always 

difficult to obtain in real world, this threshold 

value for a specific CMP system can be obtained 

through experimental results (e.g. via 

experiments with Sensitivity_RANKING 

Module) or some empirical values. The value in 

our current policy is set at 40Mbytes/s. 

3.5  Scheduling Overheads   

Overheads of our proposed dynamic I/O-

aware scheduling not only determine the overall 

performance of the workloads, but also the 

practicability of such a policy. The total 

overheads are the sum of those incurred in each 

time quantum. The overheads in each quantum 
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depend on two major components: I/O 

information collector and decision-making 

module. The time complexity is O (n2) for both 

of them, where n is  the number of batch jobs. 

Since our policy is implemented as a user-

level scheduler, the overheads of context 

switching due to system calls are the most time-

consuming part. This is mainly due to the current 

implementation of Linux that allows certain time 

delay after it receives the signal before carrying 

out job suspension. Nevertheless, the overheads 

would not exceed 1% when TIMESLICE varies 

from 1s to 20s. 

3.6  Discussions for Insufficences    

Different applications have their different 

sensitivities to shared resource contention. 

Accommodating such sensitivities can make the 

scheduler more adaptive. This part of work is 

still in progress, and would be covered in our 

future work. 

Our current scheduling policy aims primarily 

at co-running performance. Applications with 

higher I/O demands are more prone to be 

suspended. This tends to hurt the fairness. Our 

future work would consider more issues 

including fairness in our scheduling policy.  

4.  Evaluations 

Our dynamic I/O-aware scheduling policy is 

evaluated on an 8-socket 64-core X7550 server 

node with benchmarks as introduced in Table 1.  

Since our dynamic scheduler is implemented 

as a user-level  scheduler, it will be taken over 

by Linux scheduler eventually. The efficiency of 

our dynamic scheduler can be evaluated through 

a comparison between Linux scheduler with and 

without our scheduling policy. 

To study its efficiency more comprehensively, 

performance improvement on the throughput of 

the workloads are examined. The throughput is 

calculated by the number of jobs in a workload, 

and the execution time of the workload, workloadT , 

as shown in (3). For a fairer comparison of the 

optimization effects on all concurrent jobs, 

slowdown and average runtime are evaluated 

either. The slowdown of a job, jJob  is calculated 

by the ratio of the runtime when it runs alone to 
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that when it runs in a k-CMP configuration. The 

slowdown for a workload is the sum of 

slowdown for all jobs as shown in (4). The 

average runtime of a workload is calculated with 

all jobs’ j
k cT  values as in (5). 

workload

Jobs
Throughput

T
                                  (3) 

1

jN
alone

j
j k c

T
Slowdown

T 

                                      (4) 

1

N
j

k c
j

T

N
Aver runtime





                                   (5) 

4.1 Workload 

Two different types of workloads are studied 

in this section:  

 Duplication Type (D-TYPE). the 

workload is composed of duplicated I/O 

sensitive jobs that have almost the same 

behavior, and will suffer serious 

contention when they are running 

concurrently. 

 Mixed Behaviors (M-TYPE). The 

workload is composed of different jobs 

that are combined randomly with all 

applications in Table 1.  

Table 3 lists detailed information for 15 

workloads, which includes benchmark name, 

input data set, and the corresponding number of 

jobs in each workload, denoted as batch length. 

At the beginning of execution for each workload, 

the server would full-load 64 single-threaded 

jobs on all 64 cores or 8 multi-threaded jobs on 

Table 3.  Information for the workloads 

Type Index Benchmark Input set Batch length 

D-TYPE 

#1 x264 simlarge 128 
#2 x264 simlarge 256 
#3 freqmine simlarge 64 
#4 PS duplicated 8 
#5 PS different 24 
#6 KM duplicated 8 
#7 graph -s 22 -e 16 64 
#8 graph -s 22 -e 18 64 
#9 graph -s 22 -e 16 128 

M-TYPE 

#10 raytrace+x264 simlarge 128 
#11 parsec+graph mixed 128 
#12 parsec+graph mixed 128 
#13 parsec + real mixed 128 
#14 parsec + real mixed 128 
#15 parsec simlarge 64 
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all 8 CMPs at most for each batch. No core-

sharing is permitted in our experiment. For M-

type workloads, each job would take a separate 

CMP and at most 8 jobs could be handled in a 

batch. More jobs will be served whenever there 

are cores released and become idle.  

As in Table 3, experiments with D-type are 

composed with 9 workloads. Explicit I/O 

interfaces are evaluated through PARSEC 

benchmarks (workload #1 ~ #3) and real user 

applications (workloads #4 ~ #6). Implicit I/O 

interfaces are evaluated through Graph 

applications (workload #7 ~ #9). Workloads #10 

~ #15 are M-type, which are mixed with 

PARSEC benchmarks, graph and real user 

applications. Applications in a workload could 

be single-threaded, or multi-threaded. Moreover, 

these workloads are mixed with applications 

which are either sensitive to I/O contentions or 

Fig.19. Improvement on serving time for workload #1. 

Fig.16. Performance improvement for D-TYPE workloads 
(explict I/O jobs: PARSEC and real user app). 

Fig.17. Performance improvement for D-TYPE workloads 
(implicit I/O jobs: Graph). 

Fig.18. Improvement on waiting time for workload #1. 
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not (from PARSEC or Graph applications with 

lower memory demands).   

4.2 Evaluation for D-TYPE workloads 

4.2.1 Performance Results 

Figure 16 shows the performance 

improvement for 6 workloads using our dynamic 

scheduler. All workloads have achieved notable 

improvement in average runtime, ranging from 

6.7% to 67.9%, respectively. As for the 

slowdown, most of the workloads could obtain 

improvement ranging from 8.3% to 73.3%, 

respectively, while #2 suffers a slight 

degradation by 2.9%.  Moreover, most of the 

workloads can benefit 7.09% ~ 40.4% on the 

system throughput, while #3 and #6 do not 

obtain obvious benefits from this scheduler in 

their throughputs. 

Compared with workloads of PARSEC, 

workloads with concurrent graph traversal 

algorithms have obtained much more 

improvements from the dynamic scheduling in 

Figure 17. The throughputs for them range from 

45% to 431%. The improvements on average 

slowdown range from 40% to 433%. The 

average runtime could be improved by 45% to 

82% with our dynamic scheduler. For #8 which 

includes 64 jobs, our dynamic scheduler could 

obtain the most improvements on the throughput 

by 431%. 

4.2.2 Performance Analysis 

We take #1 for further analysis. Comparisons 

for two kinds of latency, WaitingLatency and 

ServingLatency , are made between Linux scheduler 

with and without the optimization of the 

dynamic scheduler, denoted as OS and Dynamic, 

respectively in Figure 18 and Figure 19. Latency 

data are sampled at intervals of 1 second. Figure 

18 illustrates the effects on WaitingLatency through 

inhibition of bursty I/O requests. With the 

dynamic scheduler, the average waiting time is 

improved by 59%, from 696ms to 286ms. 

ServingLatency  could also benefit from the 

dynamic scheduler as shown in Figure 19. It 

achieves 21% improvement with the dynamic 

scheduler, from 4.95ms to 3.9ms. 
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4.3  Evaluations for M-TYPE workloads 

4.3.1 Performance Results 

In this section, we evaluate six other 

workloads which are mixed with the three types 

of applications in Table 1.  

Since the workloads are composed of 

benchmarks with  different execution time. The 

throughput is influenced by the jobs that have 

the longest runtime. The evaluation of slowdown 

can reflect the effect of optimization more 

properly. 

Figure 20 shows the improvement for M-

TYPE workloads. All these workloads could 

achieve improvement on the slowdown, ranging 

from 10.8%-97.7%. The improvement on 

average runtime ranges from 9.3% to 56.2%. 

Except workload #10, all other workloads see 

improvements in throughput at 1.5% ~ 131.2%, 

respectively. Although workload #10 doesn’t see 

obvious improvement in throughput, neither 

does it suffer with the dynamic scheduler.  

4.3.2 Performance Analysis 

We also perform analysis on the effect of the 

dynamic scheduler for M-TYPE workload #11. 

The comparisons of two kinds of latency, 

 
Fig.22. Improvement on service time for workload #11. 

 
Fig.20. Performance improvement on M-TYPE workloads. 

 
Fig.21. Improvement on waiting time for workload #11. 
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ServingLatency and WaitingLatency ,are made between 

Linux scheduler with and w/o optimization of 

our dynamic scheduler. Data sampled at interval 

of 1s are collected for these two kinds of latency 

and the improvements are shown in Figure 21 

and Figure 22.   

Figure 21 shows the effect of the dynamic 

scheduler on WaitingLatency  , average waiting time 

from all sampled intervals is improved by 60% 

compared with that with Linux scheduler, from 

243.6ms to 98ms.   

ServingLatency also could benefit slightly from the 

dynamic scheduler as shown in Figure 22. The 

average service time is improved by 4.6% 

compared with that with Linux scheduler, from 

3.05ms to 2.91ms. 

4.4  Discussion on Efficiency and Inefficiency 

In the experiments, we observed that 

workloads that have a higher sensitivity to I/O 

contention would also show a sensitivity to the 

dynamic scheduler. For example, jobs of x264, 

raytrace and graph with “-s 22 -e 18” suffer a lot 

from I/O contention when there are multiple co-
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Fig.24. Improvement on the runtime for workload #15. 

Fig.23. Improvement on the runtime for workload #8. 



29                                                                                                         J. Comput. Sci. & Technol., July 2013, Vol.*, No.* 

 
 
 

running jobs. They are also much easier to 

achieve more improvement from optimizations 

that deal with I/O contention.  

Through detailed comparisons between 

Linux scheduler with and w/o the optimization 

of dynamic scheduler for workloads #8 and #15 

(in Figure 23 and Figure 24), we give a more 

detailed analysis on the efficiency of the 

dynamic scheduler. 

Workload #8 is the one that benefits the most 

from the dynamic scheduler. The workload is 

generated by duplicating graph jobs that have 

relatively higher I/O activities and longer 

execution time of more than 2000s. Due to the 

calling of mmap, severe implicit I/O contention 

is observed throughout the entire job execution. 

For this kind of workloads, the dynamic 

scheduler could  play a better role for mitigating 

the I/O contention. All the jobs show visible  

improvement in Figure 23. 

Figure 24 displays contrasts for 64 jobs in 

workload #15. All jobs have relatively shorter 

execution time of about 30s-200s. Jobs in this 

workload have diverse I/O characteristics and 

with different sensitivities to I/O contention. For 

example, swaptions (in black circle) from 

PARSEC has less I/O contentions and 

correspondingly they appear more stable in the 

experiments. For this kind of workload, 

relatively few options for optimizations are there. 

The comparisons among jobs in this workload 

reveal a very narrow gap between the runtime 

using Linux scheduler and that optimized by the 

dynamic scheduler. 

For workloads with more than 64 jobs, I/O 

contention would decrease gradually after the 

first 64 jobs. If the workload is mostly composed 

of shorter jobs, trivial degradation may occur for 

this kind of workloads, e.g. in workload #2.  

5.  Related work 

Contention-aware scheduling has been 

investigated ever since last century. Performance 

degradation caused by contention in shared 

resources, such as last level cache (LLC)[23-25], 

memory bandwidth[8], and memory subsystem[9] 

on SMP or CMP have also been studied 



Lu Fang et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems                                                           30  

 

extensively. Some of the researches put more 

focuses on optimizations of contentions for 

multithreaded applications[7,10]. Recent work in 

this area has started to focus on more practical 

issues of resource utilization on modern service 

platforms such as CMP and cloud computing[2,4]. 

These work tries to enhance resource utilization 

by co-locating applications with complementary 

demand on system resources, e.g. one is CPU-

intensive and the other is memory-intensive. 

Through estimation or mitigation of interference 

from shared-memory contention, these 

techniques can improve resource utilization 

without losing QoS. The research efforts[26][27] 

combines page coloring and XOR cache 

mapping to reduce row buffer conflicts due to 

inter-thread inference. A recent work[28] 

introduces an empirical model for predicting 

cross-core performance interference on 

multicore processors, which can further be used 

to guide co-runner-aware compiler 

optimizations[4][29], or some domain-specific 

optimizations[30][31][32], to make datacenter 

applications co-locate better. 

Performance bottlenecks in I/O continue to be 

one of the hot research topics since last century. 

There have been many solutions proposed from 

different perspectives for better I/O performance. 

As an effective optimization, techniques using 

I/O scheduling policies can be divided into two 

major types: performance-oriented scheduling 

and fairness-oriented scheduling.  

5.1 Performance-Oriented Scheduling  

A lot of previous work on mitigating I/O 

bottlenecks have concentrated on the 

performance of I/O devices. Under such 

premises, disk scanning is considered the core 

reason for the low I/O performance. Scheduling 

I/O operations to improve disk scanning is a 

kind of optimization that benefits from high 

concurrency among I/O operations[15][16]. Those 

schemes did not take I/O contention into 

consideration.  

Longer disk scanning by noncontiguous I/O 

requests is one of the main reasons that cause 
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poor disk performance. Optimization on the 

sequence I/O operations by data sieving could 

improve such I/O performance[17][18]. 

Disk caching in memory is an effective 

technique to speedup I/O performance. The work 

in [20] demonstrated several I/O optimizations 

with shared memory for specific languages, e.g. 

MPI-IO applications. Since optimization using 

shared memory will take some memory 

resources away from regular memory operations, 

a careful trade-off needs to be made. Workloads 

with Graph500 in our work are also optimized 

with disk caching for I/O operations. However, 

background implicit I/O activities still can cause 

severe I/O contention. 

Research on I/O activities in virtual machines 

has also become a hot topic. The work in [33] 

focuses on I/O contention among multiple guest 

domains. The work points out that the fairness in 

I/O resource allocation could lead to poor 

performance due to the differences in I/O 

requests. The work in [34] pointed out a key 

shortcoming in the scheduler of current virtual 

machine monitors (VMM) that may lead to 

communication behavior of applications. 

Solutions include techniques such as booking 

pages for communication, anticipatory 

scheduling for sender, etc. in order to make 

VMM more aware of the characteristics of 

applications.  

Most I/O schedulers focus on scheduling 

algorithms without taking the characteristics of 

applications into consideration. In fact, the 

applications may show different sensitivities to 

I/O performance. FIOS in [35] is a flash I/O 

scheduler that targets solid-state drives (SSD) 

and takes both fairness and performance into 

consideration using timeslice-based heuristic. 

The most important premise of FIOS is the 

discrepancy between read time and write time on 

SSD. Based on this asymmetry, the scheduler 

can serve both for better performance with a 

preference to reads using timeslice-based 

scheduling. This could do well to some 

applications that used to stall by writes.   
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I/O throttling is a kind of optimization for 

higher resource utilization, which is the most 

similar to our work from the perspective of 

coordinating I/O demands[36]. This technique 

always is applied in services which are 

comprised by tasks of different QoS. The study 

in [37] is a very recent work which exploits I/O 

throttling in MapReduce. However, it would 

sacrifice low-QoS tasks to ensure the 

performance of high-QoS tasks. 

5.2 Fairness-based Scheduling 

Software scheduling policies are always a 

better choice for mitigating resource conflict, 

including I/O contention. Among all I/O 

schedulers, fairness-oriented I/O schedulers are 

the main type that has been thoroughly studied 

in the past. I/O scheduling policies, such as 

NOOP, DEADLINE and CFQ, are among the 

most commonly used polices in mainstream OS 

such as Linux[22,38]. The work in [22] gives a 

comparative study on all these policies. However, 

fairness-based schedulers often take little or no 

consideration in performance. Due to the lack of 

knowledge in the characteristics of applications, 

contention of shared resources are difficult to 

resolve using fairness-oriented policies. 

6.  Conclusions  

The efficiency of batch processing is 

attracting renewed interests on many modern 

service platforms such as clouds and clusters 

because of the massive data sets need to be 

processed by many new applications. Multi-

socket CMPs on those platforms also have 

created new challenges and opportunities for 

batch processing. For example, shared resources 

contentions such as I/O contentions that could 

lower the resource utilization of the platforms 

and the QoS for batch-mode services running in 

concurrent mode. 

 In this paper, the major causes of 

performance degradation due to I/O contention 

are identified and studied. A dynamic I/O-aware 

scheduling strategy is proposed to deal with 

those issues. It could improve performance by 

regulating I/O contention and reducing the 

overhead caused by bursty I/O requests. The 
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experimental results on the large-scale server of 

Dawning Linux Cluster show the effectiveness 

of such a strategy in improving the throughput of 

the I/O sensitive batch-mode workloads. 

Meanwhile, the slowdown of workloads and the 

average runtime of each user job could also 

benefit from such a strategy. 

Fairness is a very important and practical 

issue on cluster platforms. Further researches on 

this problem are our next step and would be 

covered in our future work.    
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